Olm vắng vẻ thế nhỉ ?
Cho x + y = 1 . Tìm giá trị nhỏ nhất của :
a) A = x2 + y2 b) 3 - xy .
Lm đc thì k tốt .
K lm đc thì k like .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bac hai thi bien doi ve tong binh phuong
\(A=\left(x^2-2.3x+9\right)+\left(y^2+2.\frac{5}{2}y+\frac{25}{4}\right)+\left(1-9-\frac{25}{4}\right)\)cu ep vao BP thua de ra ngoai
\(A=\left(x-3\right)^2+\left(y+\frac{5}{2}\right)^2+\left(1-9-\frac{25}{4}\right)\)
\(A\ge\left(1-9-\frac{25}{4}\right)\)co tinh de nguyen cac gia tri them bot de ban de hieu
dang thuc khi x=3; y=-5/2
\(S=\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)
\(S=\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}\)
\(S=1+\frac{c}{a+b}+1+\frac{a}{b+c}+1+\frac{b}{c+a}>3\)
Lời giải:
a. Áp dụng BĐT Cô-si:
$x^4+9\geq 6x^2$
$y^4+9\geq 6y^2$
$\Rightarrow x^4+y^4+18\geq 6(x^2+y^2)$
$A+18\geq 36$
$A\geq 18$
Vậy GTNN của $A$ là $18$ khi $x^2=y^2=3$
b.
$(x-y)^2\geq 0$
$\Leftrightarrow x^2+y^2\geq 2xy$
$\Leftrightarrow 2(x^2+y^2)\geq (x+y)^2$
$\Leftrightarrow 12\geq (x+y)^2$
$\Rightarrow B=x+y\leq \sqrt{12}$. Vậy $B$ max bằng $\sqrt{12}$ khi $x=y=\sqrt{3}$
$(x-y)^2\geq 0$
$\Leftrightarrow x^2+y^2\geq 2xy$
$\Leftrightarrow 6\geq 2C$
$\Leftrightarrow C\leq 3$. Vậy $C_{\max}=3$. Giá trị này đạt tại $x=y=-\sqrt{3}$
1) \(\left(2x+3\right)^2=4x^2+12x+9\)
\(\left(3x+2\right)^2=9x^2+12x+4\)
\(\left(2x+5\right)^2=4x^2+20x+25\)
\(\left(2x+\dfrac{1}{3}\right)^2=4x^2+\dfrac{4}{3}x+\dfrac{1}{9}\)
\(\left(3x+\dfrac{1}{3}\right)^2=9x^2+2x+\dfrac{1}{9}\)
2) \(\left(2x-3\right)^2=4x^2-12x+9\)
\(\left(3x-2\right)^2=9x^2-12x+4\)
\(\left(2x-5\right)^2=4x^2-20x+25\)
\(\left(2x-\dfrac{1}{3}\right)^2=4x^2-\dfrac{4}{3}x+\dfrac{1}{9}\)
\(\left(3x-\dfrac{1}{3}\right)^2=9x^2-2x+\dfrac{1}{9}\)
3) \(\left(2x-3\right)\left(2x+3\right)=4x^2-9\)
\(\left(3x-4\right)\left(3x+4\right)=9x^2-16\)
\(\left(2x-5\right)\left(2x+5\right)=4x^2-25\)
\(\left(x-\dfrac{1}{2}\right)\left(x+\dfrac{1}{2}\right)=x^2-\dfrac{1}{4}\)
\(\left(2x-\dfrac{1}{3}\right)\left(2x+\dfrac{1}{3}\right)=4x^2-\dfrac{1}{9}\)
1: \(\left(2x+3\right)^2=4x^2+12x+9\)
\(\left(3x+2\right)^2=9x^2+12x+4\)
\(\left(2x+5\right)^2=4x^2+20x+25\)
\(\left(2x+\dfrac{1}{3}\right)^2=4x^2+\dfrac{4}{3}x+\dfrac{1}{9}\)
\(\left(3x+\dfrac{1}{3}\right)^2=9x^2+2x+\dfrac{1}{9}\)
bài 1
a) I x I +2I y I =0 b) 3 I xI + 2 I yI =0
vì giá trị tuyệt đối của x và y luôn >= 0 vì giá trị tuyệt đối của x và y luôn >=0
nên IxI=0 và 2IyI=0 nên 3IxI=0 và 2IyI=0
suy ra x=0 và y=0 suy ra x=0 và y=0
vì x và y là hai số khác nhau nên vì x khác y nên
ko có x và y thõa mãn điều kiện trên ko có x và y thõa mãn điều kiện trên
a , vì /x/+2/y/=0
=>/x/=0;2/y/=0=>x=0;y=0
b,vì 3/x/+2/y/=0
=>3/x/=0;2/y/=0
=>x=0;y=0