Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 7:
\(a,A=\dfrac{2a+a-3}{a-3}\cdot\dfrac{\left(a-3\right)\left(a+3\right)}{3}=\dfrac{3\left(a-1\right)\left(a+3\right)}{3}=\left(a-1\right)\left(a+3\right)\\ b,B=\dfrac{b+3-6}{b+3}:\dfrac{b^2-9-b^2+10}{\left(b-3\right)\left(b+3\right)}\\ B=\dfrac{b-3}{b+3}\cdot\left(b-3\right)\left(b+3\right)=\left(b-3\right)^2\)
Bài 8:
\(a,M=\dfrac{4m^2-4mn+n^2}{m^2}:\dfrac{n-2m}{mn}=\dfrac{\left(n-2m\right)^2}{m^2}\cdot\dfrac{mn}{n-2m}=\dfrac{n\left(n-2m\right)}{m}\\ b,N=\dfrac{1}{3}+x:\dfrac{x+3-x}{x+3}=\dfrac{1}{3}+x\cdot\dfrac{x+3}{3}=\dfrac{1+x^2+3x}{3}\)
Bài 8:
b: \(N=\dfrac{1}{3}+\dfrac{x}{\dfrac{x+3-x}{x+3}}=\dfrac{1}{3}+\dfrac{x}{\dfrac{3}{x+3}}=\dfrac{1}{3}+\dfrac{x+3}{3x}=\dfrac{x+x+3}{3x}=\dfrac{2x+3}{3x}\)
mn giúp mik vs ạ bài nào cx đc ạ cả 2 thì càng tốt mik cảm ơn vì bài hơi dài nên mon mn thông cảm :)
Câu 106:
a: Xét ΔABC có
P là trung điểm của AB
N là trung điểm của AC
Do đó: PN là đường trung bình của ΔABC
Suy ra: PN//BC
hay PN//HM; QN//HM
Xét tứ giác QNMH có QN//HM
nên QNMH là hình thang
mà \(\widehat{QHM}=90^0\)
nên QNMH là hình thang vuông
b: Ta có: ΔAHC vuông tại H
mà HN là đường trung tuyến ứng với cạnh huyền AC
nên \(HN=\dfrac{AC}{2}\left(1\right)\)
Xét ΔABC có
M là trung điểm của BC
P là trung điểm của AB
Do đó: MP là đường trung bình của ΔABC
Suy ra: MP//AC và \(MP=\dfrac{AC}{2}\left(2\right)\)
Từ (1) và (2) suy ra MP=HN
Xét tứ giác MNPH có PN//HM
nên MNPH là hình thang
mà MP=HN
nên MNPH là hình thang cân
bạn đinhr thực sự hâm mộ bạn luôn á cam rơn nhìu nha mong bn sẽ luôn giúp đỡ mik :)
Bài 4:
a: Ta có: \(\widehat{OAB}=\widehat{ODC}\)
\(\widehat{OBA}=\widehat{OCD}\)
mà \(\widehat{ODC}=\widehat{OCD}\)
nên \(\widehat{OAB}=\widehat{OBA}\)
hay ΔOAB cân tại O
hai bài câu a mik lm đc r nhe mn lm giúp mik câu b thôi ạ mik ko bt lm;-;
Bài 3:
\(a,=-\left(x^2-2x+1\right)-2=-\left(x-1\right)^2-2\le-2\)
Dấu \("="\Leftrightarrow x=1\)
\(b,=-2\left(x^2+2\cdot\dfrac{1}{4}x+\dfrac{1}{16}\right)+\dfrac{9}{8}=-2\left(x+\dfrac{1}{4}\right)^2+\dfrac{9}{8}\le\dfrac{9}{8}\)
Dấu \("="\Leftrightarrow x=-\dfrac{1}{4}\)
Bài 4:
\(a,=\left(x^2+2\cdot\dfrac{5}{2}x+\dfrac{25}{4}\right)-\dfrac{21}{4}=\left(x+\dfrac{5}{2}\right)^2-\dfrac{21}{4}\ge-\dfrac{21}{4}\)
Dấu \("="\Leftrightarrow x=-\dfrac{5}{2}\)
\(b,=\left(x^2-8x+16\right)+1=\left(x-4\right)^2+1\ge1\)
Dấu \("="\Leftrightarrow x=4\)
b: Xét ΔABD và ΔBAC có
BA chung
BD=AC
AD=BC
Do đó: ΔABD=ΔBAC
c: ta có: EA+EC=AC
EB+ED=BD
mà AC=BD
và EA=EB
nên EC=ED
a: Xét ΔABC có BM/BC=BD/BA
nên MD//AC
=>MM' vuông góc AB
=>M đối xứngM' qua AB
b: Xét tứ giác AMBM' có
D là trung điểm chung của AB và MM'
MA=MB
Do đó: AMBM' là hình thoi
1) \(\left(2x+3\right)^2=4x^2+12x+9\)
\(\left(3x+2\right)^2=9x^2+12x+4\)
\(\left(2x+5\right)^2=4x^2+20x+25\)
\(\left(2x+\dfrac{1}{3}\right)^2=4x^2+\dfrac{4}{3}x+\dfrac{1}{9}\)
\(\left(3x+\dfrac{1}{3}\right)^2=9x^2+2x+\dfrac{1}{9}\)
2) \(\left(2x-3\right)^2=4x^2-12x+9\)
\(\left(3x-2\right)^2=9x^2-12x+4\)
\(\left(2x-5\right)^2=4x^2-20x+25\)
\(\left(2x-\dfrac{1}{3}\right)^2=4x^2-\dfrac{4}{3}x+\dfrac{1}{9}\)
\(\left(3x-\dfrac{1}{3}\right)^2=9x^2-2x+\dfrac{1}{9}\)
3) \(\left(2x-3\right)\left(2x+3\right)=4x^2-9\)
\(\left(3x-4\right)\left(3x+4\right)=9x^2-16\)
\(\left(2x-5\right)\left(2x+5\right)=4x^2-25\)
\(\left(x-\dfrac{1}{2}\right)\left(x+\dfrac{1}{2}\right)=x^2-\dfrac{1}{4}\)
\(\left(2x-\dfrac{1}{3}\right)\left(2x+\dfrac{1}{3}\right)=4x^2-\dfrac{1}{9}\)
1: \(\left(2x+3\right)^2=4x^2+12x+9\)
\(\left(3x+2\right)^2=9x^2+12x+4\)
\(\left(2x+5\right)^2=4x^2+20x+25\)
\(\left(2x+\dfrac{1}{3}\right)^2=4x^2+\dfrac{4}{3}x+\dfrac{1}{9}\)
\(\left(3x+\dfrac{1}{3}\right)^2=9x^2+2x+\dfrac{1}{9}\)