K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2015

\(A=\frac{1}{0,\left(93\right)}+\frac{10}{0,\left(93\right)}+\frac{100}{0,\left(93\right)}=\frac{1+10+100}{\frac{93}{99}}=111:\frac{93}{99}=\frac{111.99}{93}=\frac{10989}{93}\)

22 tháng 3 2020

\(A=\left[\frac{1\frac{11}{31}\cdot4\frac{3}{7}-\left(15-6\frac{1}{3}\cdot\frac{2}{19}\right)}{4\frac{5}{6}+\frac{1}{6}\left(12-5\frac{1}{3}\right)}\cdot\left(-1\frac{14}{93}\right)\right]\cdot\frac{31}{50}\)

\(A=\left[\frac{\frac{42}{31}\cdot\frac{31}{7}-\left(15-\frac{19}{3}\cdot\frac{2}{19}\right)}{4\frac{5}{6}+\frac{1}{6}\left(12-\frac{16}{3}\right)}\cdot\left(-\frac{107}{93}\right)\right]\cdot\frac{31}{50}\)

\(A=\left[\frac{6-\left(15-\frac{2}{3}\right)}{\frac{29}{6}+\frac{10}{9}}\cdot\left(-\frac{107}{93}\right)\right]\cdot\frac{31}{50}\)

\(A=\left[\frac{6-\frac{43}{3}}{\frac{107}{18}}\cdot\left(-\frac{107}{93}\right)\right]\cdot\frac{31}{50}\)

\(A=\left[\frac{-\frac{25}{3}}{\frac{107}{18}}\cdot\left(-\frac{107}{93}\right)\right]\cdot\frac{31}{50}\)

\(A=\frac{50}{31}\cdot\frac{31}{50}=1\)

24 tháng 7 2015

ta có \(A=\frac{2}{0,\left(1998\right)}+\frac{2}{0,0\left(1998\right)}+\frac{2}{0,00\left(1998\right)}=\frac{2}{0,\left(1998\right)}+\frac{2}{0,\left(1998\right)}.\frac{1}{10}+\frac{2}{0,\left(1998\right)}.\frac{1}{100}\)

                                                                          \(=\frac{2}{0,\left(1998\right)}.\left(1+\frac{1}{10}+\frac{1}{100}\right)=\frac{2}{0,\left(1998\right)}.1\frac{11}{100}=\frac{222}{0,00\left(1998\right)}\)

17 tháng 9 2020

\(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{\left(2x+1\right)\left(2x+3\right)}=\frac{15}{93}\)

\(\Leftrightarrow\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{\left(2x+1\right)\left(2x+3\right)}=\frac{10}{31}\)

\(\Leftrightarrow\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2x+1}-\frac{1}{2x+3}=\frac{10}{31}\)

\(\Leftrightarrow\frac{1}{3}-\frac{1}{2x+3}=\frac{10}{31}\)

\(\Leftrightarrow\frac{1}{2x+3}=\frac{1}{93}\)

\(\Leftrightarrow2x+3=93\)

\(\Leftrightarrow2x=90\)

\(\Leftrightarrow x=45\)

17 tháng 9 2020

\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{\left(2x+1\right)\left(2x+3\right)}=\frac{15}{93}\)

\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{\left(2x+1\right)\left(2x+3\right)}=\frac{10}{31}\)

\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{2x+1}-\frac{1}{2x+3}=\frac{10}{31}\)

\(\frac{1}{3}-\frac{1}{2x+3}=\frac{10}{31}\)

\(\Rightarrow\frac{1}{2x+3}=\frac{1}{93}\)

\(\Rightarrow2x+3=93\)

\(\Rightarrow2x=90\)

\(\Rightarrow x=45\)

Vậy x = 45.

18 tháng 8 2020

[\(\frac{-75}{59}\).\(\frac{-107}{93}\)]\(\frac{31}{50}\)=\(\frac{2675}{1829}\).\(\frac{31}{50}\)=\(\frac{107}{118}\)

18 tháng 8 2020

\(\left[\frac{1\frac{11}{31}\cdot4\frac{3}{7}-\left(15-6\frac{1}{3}\cdot\frac{2}{19}\right)}{4\frac{5}{6}+\frac{1}{6}\left(12-5\frac{1}{3}\right)}\cdot\left(-1\frac{14}{93}\right)\right]\cdot\frac{31}{50}\)

\(=\left[\frac{\frac{42}{31}\cdot\frac{31}{7}-\left(15-\frac{19}{3}\cdot\frac{2}{19}\right)}{4\frac{5}{6}+\frac{1}{6}\left(12-\frac{16}{3}\right)}\cdot\left(-\frac{107}{93}\right)\right]\cdot\frac{31}{50}\)

\(=\left[\frac{6-\left(15-\frac{2}{3}\right)}{\frac{29}{6}+\frac{1}{6}\cdot\frac{20}{3}}\cdot\left(-\frac{107}{93}\right)\right]\cdot\frac{31}{50}\)

\(=\left[\frac{6-15+\frac{2}{3}}{\frac{29}{6}+\frac{10}{9}}\cdot\left(-\frac{107}{93}\right)\right]\cdot\frac{31}{50}\)

\(=\left[\frac{-\frac{25}{3}}{\frac{107}{18}}\cdot\left(-\frac{107}{93}\right)\right]\cdot\frac{31}{50}\)

\(=\left[\left(-\frac{150}{107}\right)\cdot\left(-\frac{107}{93}\right)\right]\cdot\frac{31}{50}=\frac{50}{31}\cdot\frac{31}{50}=1\)

7 tháng 6 2020

1/2(2/3.5+2/5.7+2/7.9+...+2/(2x+1)(2x+3))=15/93

1/2(1/3-1/5+1/5-1/7+1/7-1/9+...+1/2x+1-1/2x+3)=15/93

1/2(1/3-1/2x+3)=15/93

=>1/3-1/2x+3=10/31

=>1/2x+3=1/93

=>2x+3=93

2x=93-3=90

=>x=45

7 tháng 6 2020

Đặt \(A=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{\left(2x+1\right)\left(2x+3\right)}=\frac{15}{93}\)

\(\Rightarrow2A=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{\left(2x+1\right)\left(2x+3\right)}=\frac{10}{31}\)

\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{2x+1}-\frac{1}{2x+3}=\frac{10}{31}\)

\(\frac{1}{3}-\frac{1}{2x+3}=\frac{10}{31}\)

\(\frac{1}{2x+3}=\frac{1}{3}-\frac{10}{31}\)

\(\frac{1}{2x+3}=\frac{1}{93}\)

\(\Rightarrow2x+3=93\)

\(2x=90\)

\(x=45\)

Vậy \(x=45\).