Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left[\frac{1\frac{11}{31}\cdot4\frac{3}{7}-\left(15-6\frac{1}{3}\cdot\frac{2}{19}\right)}{4\frac{5}{6}+\frac{1}{6}\left(12-5\frac{1}{3}\right)}\cdot\left(-1\frac{14}{93}\right)\right]\cdot\frac{31}{50}\)
\(A=\left[\frac{\frac{42}{31}\cdot\frac{31}{7}-\left(15-\frac{19}{3}\cdot\frac{2}{19}\right)}{4\frac{5}{6}+\frac{1}{6}\left(12-\frac{16}{3}\right)}\cdot\left(-\frac{107}{93}\right)\right]\cdot\frac{31}{50}\)
\(A=\left[\frac{6-\left(15-\frac{2}{3}\right)}{\frac{29}{6}+\frac{10}{9}}\cdot\left(-\frac{107}{93}\right)\right]\cdot\frac{31}{50}\)
\(A=\left[\frac{6-\frac{43}{3}}{\frac{107}{18}}\cdot\left(-\frac{107}{93}\right)\right]\cdot\frac{31}{50}\)
\(A=\left[\frac{-\frac{25}{3}}{\frac{107}{18}}\cdot\left(-\frac{107}{93}\right)\right]\cdot\frac{31}{50}\)
\(A=\frac{50}{31}\cdot\frac{31}{50}=1\)
ta có \(A=\frac{2}{0,\left(1998\right)}+\frac{2}{0,0\left(1998\right)}+\frac{2}{0,00\left(1998\right)}=\frac{2}{0,\left(1998\right)}+\frac{2}{0,\left(1998\right)}.\frac{1}{10}+\frac{2}{0,\left(1998\right)}.\frac{1}{100}\)
\(=\frac{2}{0,\left(1998\right)}.\left(1+\frac{1}{10}+\frac{1}{100}\right)=\frac{2}{0,\left(1998\right)}.1\frac{11}{100}=\frac{222}{0,00\left(1998\right)}\)
\(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{\left(2x+1\right)\left(2x+3\right)}=\frac{15}{93}\)
\(\Leftrightarrow\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{\left(2x+1\right)\left(2x+3\right)}=\frac{10}{31}\)
\(\Leftrightarrow\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2x+1}-\frac{1}{2x+3}=\frac{10}{31}\)
\(\Leftrightarrow\frac{1}{3}-\frac{1}{2x+3}=\frac{10}{31}\)
\(\Leftrightarrow\frac{1}{2x+3}=\frac{1}{93}\)
\(\Leftrightarrow2x+3=93\)
\(\Leftrightarrow2x=90\)
\(\Leftrightarrow x=45\)
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{\left(2x+1\right)\left(2x+3\right)}=\frac{15}{93}\)
\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{\left(2x+1\right)\left(2x+3\right)}=\frac{10}{31}\)
\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{2x+1}-\frac{1}{2x+3}=\frac{10}{31}\)
\(\frac{1}{3}-\frac{1}{2x+3}=\frac{10}{31}\)
\(\Rightarrow\frac{1}{2x+3}=\frac{1}{93}\)
\(\Rightarrow2x+3=93\)
\(\Rightarrow2x=90\)
\(\Rightarrow x=45\)
Vậy x = 45.
\(\left[\frac{\frac{25}{3}}{\frac{49}{6}}\cdot\left(-\frac{14}{93}\right)\right]\cdot\frac{31}{50}\)
\(=\left[\frac{25}{3}:\frac{49}{6}\cdot\left(-\frac{14}{93}\right)\right]\cdot\frac{31}{50}\)
\(=\frac{25}{3}\cdot\frac{6}{49}\cdot\frac{-14}{93}\cdot\frac{31}{50}\)
\(=\frac{25\cdot6\cdot-14\cdot31}{3\cdot49\cdot93\cdot50}\)
\(=\frac{5\cdot5\cdot2\cdot3\cdot-2\cdot7\cdot31}{3\cdot7\cdot7\cdot31\cdot3\cdot5\cdot5\cdot2}\)
\(=\frac{-2}{3\cdot7}=\frac{-2}{21}\)
Mình tính lại bằng máy tính rùi. Không sai đâu. Hứa đấy.
\(A=\frac{1}{0,\left(93\right)}+\frac{10}{0,\left(93\right)}+\frac{100}{0,\left(93\right)}=\frac{1+10+100}{\frac{93}{99}}=111:\frac{93}{99}=\frac{111.99}{93}=\frac{10989}{93}\)