Chứng minh rằng (1028 + 8)chia hết cho 36
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sơ đồ con đường |
Lời giải chi tiết |
|
Dễ thấy, 10 28 có tổng các chữ số bằng 1. ⇒ F = 10 28 + 8 có tổng các chữ số bằng 9. ⇒ F ⋮ 9 |
bt àm câu a thôi '
7a5b1 \(⋮3\Leftrightarrow\left(7+a+5+b+1\right)⋮3\Leftrightarrow\left(13+a+b\right)⋮3\)
\(\Rightarrow a+b\in\left\{2,5,8,11,14,17\right\}\)
Vì a-b=4 là chẵn\(\Rightarrow a+b\)và
a+b > 4 nên \(a+b\in\left\{8,14\right\}\)
+Nếu a+b=8 a-b=4
thì a=6
b=2
+Nếu a+b=14 a-b=4
thì a=9
b=5
Vậy a=6 và b=2
a=9 và b=5
ta có :1028+8=+8=100...00(28 chữ số 0)+8⋮9(vì 1 + 8=9⋮9)
vậy 1028+8⋮9 thỏa mãn
A = 1028 + 8
A = \(\overline{100...08}\) ( 27 chữ số 0)
Xét tổng các chữ số của A ta có: 1 + 0 x 27 + 8 = 9 ⋮ 9 ⇒A ⋮ 9
A = \(\overline{...8}\) ⋮ 2 ⇒ A \(\in\)BC(2; 9); 2 = 2; 9 = 32; BCNN(2; 9) = 2.32 = 18
⇒ A \(\in\) B(18) hay A ⋮ 18 (đpcm)
b: \(8^{10}-8^9-8^8=8^8\left(8^2-8-1\right)=8^8\cdot55⋮55\)
c: 5^5-5^4+5^3
=5^3(5^2-5+1)
=5^3*21 chia hết cho 7
e:
72^63=(3^2*2^3)^63=3^126*2^189
\(24^{54}\cdot54^{24}\cdot10^2=2^{162}\cdot3^{54}\cdot3^{72}\cdot2^{24}\cdot2^2\cdot5^2\)
\(=2^{188}\cdot3^{136}\cdot5^2\) chia hết cho 3^126*2^189
=>ĐPCM
g: \(=\left(3^4\right)^7-\left(3^3\right)^9-3^{26}\)
\(=3^{26}\left(3^2-3-1\right)=5\cdot3^{26}=5\cdot9\cdot3^{24}⋮5\cdot9=45\)
TL:
Ta có: \(10^{28}+8=100...00\)(\(28\) chữ số \(0\)) \(+8⋮9\) ( Vì \(1+8=9⋮9\))
Vậy\(10^{28}+8⋮9\) thoả mãn bài toán
CHÚC BẠN HỌC TỐT NHÉ.
Bạn nhầm rồi 1028+8 = 1036 không chia hết cho 9 nhé nên không chia hết cho 72