chứng minh rằng tổng sau đây là hợp số
abcabc + 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) abcabc + 7 = abc.1001 + 7 = abc.143.7 + 7 = 7.(abc.143 + 1) chia hết cho 7
=> abcabc + 7 là hợp số
b) abcabc + 22 = abc.1001 + 22 = abc.11.91 + 11.2 = 11.(abc.91 + 2) chia hết cho 11
=> abcabc + 22 là hợp số
Câu 9:
Vì 2015;1020 đều chia hết cho 5
nên 2015+1020 là hợp số
ta có : A=abc.1001 +7=abc.143.7+7
A=7.(abc.143+1)chia hết cho 7
suy ra : abc.abc+7 là hợp số
nhớ k cho mình nha.
Câu 1:
\(25^{15}+10^{20}\)
\(=5^{30}+5^{20}\cdot2^{20}\)
\(=5^{20}\left(5^{10}+2^{20}\right)⋮5^{20}\)
=>Đây là hợp số
a) abcabc + 7 = abc.1001 + 7 = abc.143.7 + 7 = 7.(abc.143 + 1) chia hết cho 7
\(\Rightarrow\) abcabc + 7 là hợp số
b) abcabc + 22 = abc.1001 + 22 = abc.11.91 + 11.2 = 11.(abc.91 + 2) chia hết cho 11
\(\Rightarrow\) abcabc + 22 là hợp số
c) abcabc + 39 = abc.1001 + 39 = abc.13.77 + 13.3 = 13.(abc.77 + 3) chia hết cho 13
\(\Rightarrow\) abcabc + 39 là hợp số
Ta có :
abcabc + 7 = abc . 1000 + abc + 7
= abc . 1001 + 7
= abc . 143 . 7 + 7
= 7. (abc . 143 + 1) chia hết cho 7
Mà abcabc + 7 > 1
⇒ abcabc +7 là hợp số