tìm số tự nhiên biết số đó chia cho 3,4,5,6 dư 2 còn chia 7 dư 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi số đó là a thì a-2 chia hết cho 3,4,5,6 và a-2 chia 7 dư 1
để a nhỏ nhất => a-2 nhỏ nhất => a-2=120=>a=122
Gọi số đó là a(với a thuộc N;a nhỏ hơn hoặc bằng 3)
Từ đề bài ,ta suy ra a-2 chia hết cho 3;4;5;6 hay a-2 thuộc BC(3,4,5,6)
BCNN(3,4,5,6)=22.3.5=60 nên BC(3,4,5,6)={0;60;120;180;...}
=>a thuộc {2;62;122;182;...}
Ta thấy 122 là số nhỏ nhất chia 7 dư 3 trong tập hợp trên
Vậy số cần tìm là 122
Gọi số đó là \(a(a\in N;a\leq3)\)
The đề bài tao có: \((a-2)\vdots 3;4;5;6\) hay \((a-2)\in BC\{3;4;5;6\}\)
\(BCNN\{3;4;5;6\}=2^2.3.5=60 \) nên \(BC\{3;4;5;6\}=\{0;60;120;180;...\}\)
\(\implies (a-2)\in\{0;60;120;180;...\}\)
\(\implies a\in\{2;62;122;182;...\}\)
Thất 122 là số nhỏ nhất trong các số trên chia cho 7 dư 3.
Vậy số cần tìm là 122.
~ Hok tốt a~
a) Gọi số đó là a (\(a\in N;a\ge3\)) thì từ đề toán,ta suy ra a - 2 chia hết cho 3 ; 4 ; 5 ; 6 hay a - 2\(\in\)BC(3 ; 4 ; 5 ; 6)
BCNN(3 ; 4 ; 5 ; 6) = 22.3.5 = 60 nên BC(3 ; 4 ; 5 ; 6) = {0 ; 60 ; 120 ; 180 ; ...}\(\Rightarrow a\in\){2 ; 62 ; 122 ; 182 ; ..}
Ta thấy 122 là số nhỏ nhất chia 7 dư 3 trong tập hợp trên nên số cần tìm là 122
b) Giả sử ƯCLN(a ; b) = d thì a = dm ; b = dn(\(m,n\in Z^+\)) và ƯCLN(m ; n) = 1
ƯCLN(a,b).BCNN(a,b) = ab nên BCNN(a,b) = ab : ƯCLN(a,b) = d2mn = dmn
Ta có : 23 = ƯCLN(a,b) + BCNN(a,b) = d(1 + mn) => 1 + mn\(\in\)Ư(23) = {1 ; 23} mà\(mn\ge1\left(m,n\in Z^+\right)\)
\(\Rightarrow1+mn\ge2\)=> 1 + mn = 23 => mn = 22 ; d = 1 => a = m ; b = n mà (m ; n) = (1 ; 22) ; (2 ; 11) và 2 hoán vị
Vậy 2 số cần tìm là 1 và 22 hoặc 2 và 11
tim dien h tam giac ABC biet dien h hinh thang KQCB bang 132cm2 biet AK =2/3AB QC=3/2QA
Vì số đó chia cho 2; 3; 4; 5; 6 dư 1; 2; 3; 4;5 nên nếu lấy số đó cộng thêm 1 thì được số mới chia hết cho cả 2; 3; 4; 5; 6. Và số mới đó chia cho 7 dư 1.
Số chia hết cho đồng thời 2 và 3 thì chia hết cho 6; số chia hết cho 4 thì chia hết cho 2. Vậy chỉ cần số mới chia hết cho 3; 4; 5 là nó chia hết cho cả 2; 3; 4; 5; 6. Số chia hết cho 3; 4; 5 là các số 60; 120; 180; . . .
Trong các số đó, số chia cho 7 dư 1 là 120. Vậy số chia hết cho 2; 3; 4; 5; 6 và chia cho 7 dư 1 là 120.
Suy ra số cần tìm là 120 - 1 = 119.
số đó là 52 còn mk hok biết cách trình bày