chứng minh với mọi n thì \(\frac{7n+4}{9n+5}\)tối giản
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
phân số tối giản là phân số mà tử ko còn chia hết mẫu nên ta phải CM 7n + 4 ko chia hết 9n + 5
nhân 9 vào mẫu ta đc 63n + 36=7.(9n + 5) +1 mà 1 ko chia hết cho 9n+5, =>63n + 36 ko chia hết cho 5 =>7n + a ko chia hết cho 9n + 5
vậy ps đó tối giản
đó là 1 TH còn TH còn lại là cm tử ko chia hết mẩu là nhân 7 vàotuwr rồi làm tương tự
gọi d là ƯC(7n+4; 5n+3)
\(\Rightarrow\hept{\begin{cases}7n+4⋮d\\5n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(7n+4\right)⋮d\\7\left(5n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}35n+20⋮d\\35n+21⋮d\end{cases}}}\)
\(\Rightarrow\left(35n+21\right)-\left(35n+20\right)⋮d\)
\(\Rightarrow35n+21-35n-20⋮d\)
\(\Rightarrow\left(35n-35n\right)+\left(21-20\right)⋮d\)
\(\Rightarrow0+1⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=\pm1\)
\(\Rightarrow\frac{7n+4}{5n+3}\) là phân số tối giản với mọi n
Giả sử ước chung của 7n+4 và 9n+5 là d; ta có:
-\(\left(7n+4\right)⋮d=>9\left(7n+4\right)=\left(63n+36\right)⋮d\)
- \(\left(9n+5\right)⋮d=>7\left(9n+5\right)=\left(63n+35\right)⋮d\)
Do cả hai số đều chia hết cho d nên hiệu cũng chia hết cho d;
=> (63n + 36) - ( 63n + 35) \(⋮\)d=> \(1⋮d=>d=\pm1\)
Vậy phân số trên luôn tối giản;
CHÚC BẠN HỌC TỐT...
Gọi \(d\) là \(UCLN\left(7n+4;9n+5\right)\)
\(\Rightarrow7n+4⋮d\Rightarrow9\left(7n+4\right)⋮d\Rightarrow63n+36⋮d\)
\(\Rightarrow9n+5⋮d\Rightarrow7\left(9n+5\right)⋮d\Rightarrow63n+35⋮d\)
\(\Rightarrow\left(63n+36\right)-\left(63n+35\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow\dfrac{7n+4}{9n+5}\) tối giản với mọi \(n\in N\)
Gọi d là ƯCLN(9n+5;2n+1)
Ta có 9n+5\(⋮\)d;2n+1\(⋮\)d
=>2*(9n+5)\(⋮\)d;9*(2n+1)\(⋮\)d
=>18n+10\(⋮\)d;18n+9\(⋮\)d
=>[(18n+10)-(18n+9)]\(⋮\)d
=>[18n+10-18n-9]\(⋮\)d
=>1\(⋮\)d
=>d=1
Vì ƯCLN(9n+5;2n+1)=1 Nên phân số \(\frac{9n+5}{2n+1}\) luôn là phân số tối giản(nEN*)
Đề phải là nEN* hoặc n>1
Gọi d là ƯCLN(7n+4,5n+3)
\(\Rightarrow\)7n+4 \(⋮\)d và 5n+3 \(⋮\) d
\(\Rightarrow\)5(7n+4)-7(5n+3) \(⋮\) d
\(\Rightarrow\)35n+20-35n-21 \(⋮\) d
\(\Rightarrow\)-1 chia hết cho d hay d = -1
\(\Rightarrow\)\(\dfrac{7n+4}{5n+3}\)là phân số tối giản vì có ƯCLN là -1
Gọi d là Ư(7n+4; 5n+3) (với d thuộc N*)
Ta có: 7n+4 chia hết cho d ; 5n+3 chia hết cho d
5.(7n+4) chia hết cho d ; 7.(5n+3) chia hết cho d
35n+20 chia hết cho d ; 35n+21 chia hết cho d
(35n+21)-(35n+20) chia hết cho d
1 chia hết cho d
Suy ra: d thuộc Ư(1). Do đó d=1
Vậy 7n+4/5n+3 là phân số tối giản.
\(\text{Để }\) \(\dfrac{7n + 4 }{ 5n + 3 } \) \(\text{ tối giản }\)
\(\Rightarrow ƯC( 7n + 4 ; 5n + 3 ) = 1 \)
\(\text{ Gọi }\) \(ƯC( 7n + 4 ; 5n + 3 ) = d\)
\(\text{ Theo đề bài ta có :}\)
\(\begin{cases} 7n + 4 \vdots d \\5n + 3 \vdots d \end{cases}\)
\(\Rightarrow \begin{cases} 5( 7n + 4 ) \vdots d\\ 7( 5n + 3) \vdots d\end{cases}\)
\(\Rightarrow 7( 5n + 3 ) - 5( 7n + 4 ) \vdots d\)
\(\Rightarrow 35n + 21 - 35n - 20 \vdots d\)
\(\Rightarrow 1 \vdots d\)
\(\Rightarrow d = 1\)
\(\text{ Từ đó suy ra }\) \(: \dfrac{7n + 4 }{ 5n + 3 }\) \(\text{ là phân số tối giản } \)
\(\text{ Vậy }\) \(: \dfrac{7n + 4 }{ 5n + 3 }\) \(\text{ là phân số tối giản } \)
\(#kisibongdem\)
Gọi d là ƯCLN(7n+4;5n+3)
Ta có:7n+4\(⋮\)d;5n+3\(⋮\)d
=>5*(7n+4)\(⋮\)d;7*(5n+3)\(⋮\)d
=>35n+20\(⋮\)d;35n+21\(⋮\)d
=>[(35n+21)-(35n+20)]\(⋮\)d
=>[35n+21-35n-20]\(⋮\)d
=>1\(⋮\)d
=>d=1
Vì ƯCLN(7n+4;5n+3)=1 nên phân số \(\frac{7n+4}{5n+3}\) luôn luôn tối giản(nEN)
Gọi d là UCLN (7n+4;5n+3)
=>*\(\left(7n+4\right)⋮d\Rightarrow5.\left(7n+4\right)⋮d\)
*\(\left(5n+3\right)⋮d\Rightarrow7.\left(5n+3\right)⋮d\)
Suy ra: 5.(7n+4)-7.(5n+3) chia hết cho d
=>35n+20-35n-21 chia hết cho d
=>-1 chia hết cho d
=> d chỉ có thể là 1
=> P/s \(\frac{7n+4}{5n+3}\) tối giản
Gỉa sử\(\hept{\begin{cases}7n+4⋮d\left(d\inℤ\right)\\9n+5⋮d\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}63n+36⋮d\\63n+35⋮d\end{cases}}\)
\(\Leftrightarrow\left(63n+36\right)-\left(63n+35\right)⋮d\)
\(\Leftrightarrow63n-63n+36-35⋮d\)
\(\Leftrightarrow1⋮d\)
\(\Leftrightarrow d\in\left\{-1;1\right\}\)
\(\Leftrightarrow\hept{\begin{cases}7n+4\\9n+5\end{cases}}\)tối giản\(\Leftrightarrow\)đcpm
Chúc bạn học giỏi!
Đừng quên nha! ^-^