các bạn làm ơn giúp mình bài này nhé mình like cho
** + ** = *97.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,2 + 2,3 + 3,4 - 4,5 + 5,6 - 6,7 + 7,8 - 8,9 + 9,1 = 9,3
Bài 2:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\begin{cases}a=kb\\c=kd\end{cases}\)
=> \(\frac{5a+3b}{5a-3b}=\frac{5kb+3b}{5kb-3b}=\frac{b\left(5k+3\right)}{b\left(5k-3\right)}=\frac{5k+3}{5k-3}\left(1\right)\)
\(\frac{5c+3d}{5c-3d}=\frac{5kd+3d}{5kd-3d}=\frac{d\left(5k+3\right)}{d\left(5k-3\right)}=\frac{5k+3}{5k-3}\left(2\right)\)
Từ (1) và (2) => \(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)
Bài 3:
Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\)
=> \(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=k^3\)
=> \(\frac{a}{d}=k^3\) (1)
Lại có: \(\frac{a+b+c}{b+c+d}=\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\)
=> \(\left(\frac{a+b+c}{b+c+d}\right)^3=k^3\) (2)
Từ (1) và (2) => \(\frac{a}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\)
x + 3 + 9 chia hết x + 3
9 chia hết x + 3
x + 3 thuộc Ư ( 9 )
mà Ư (9) = ( 1,3,9 )
hay x + 3 thuộc ( 1,3,9 )
ta có bảng
x + 3 1 3 9
x -2 0 6
ĐG Loại TM TM
Vậy x thuộc ( 0 , 6 )
\(\frac{2}{5}+x=\frac{4}{10}\)
\(x=\frac{4}{10}-\frac{2}{5}\)
\(x=0\)
Tk mk nha ~~ ^_^
Ai tk mk mk tk lại ~~ ^^
Kb vs mk nha m.n ~~ n_n
Có số pt là: ( 100 - 1 ) : 3 + 1 = 34 số
có số cặp là: 34 : 2 = 17 cặp
-3 + -3 + -3 + ......... + -3
= -3 . 17 = -51
I think it's gonna be like this:
5. I don't have much time so I don't use the Internet very often.
6. Tuan finds playing table tennis interesting because he often plays with his best friend.
7. I'm now having felt tired since I stayed up late to do my homework.
8. My homework will be finished by midnight.
9. We won't go anywhere until Tom comes.
10. That's one of the most interesting books I have ever read.
5 i don't have much time so i don't use the Internet very often.
6 Tuan finds playing table tennis interesting because he plays with his best friend
7 i have been feeling tired since i stayed up late to do my homework
8 My homework will have been finished be midnight
9 we haven't gone anywhere until Tom comes
10 that is one of the most interesting books i have ever read