K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2015

a)\(10^{n+1}-6.10^n\)

\(=10^n.\left(10-6\right)\)

\(=10^n.4\)

b)\(90.10^n-10^{n+2}+10^{n+1}\)

\(=10^n.\left(90-10^2+10\right)\)

\(=10^n.0=0\)

26 tháng 8 2015

a, 10n+1-6.10n=10.10n-6.10n=4.10n

Bài làm

a) 10^(n + 1) - 6 * 10^n

= 10^n + 10 - 6 * 10^n

= 10^n * ( 10 - 6 )

= 10^n * 4

b) 90 * 10^n - 10(n + 2) + 10^(n + 1)

= 90 * 10^n - 10^n * 10^2 + 10^n * 10

= 10^n * ( 90 - 10^2 + 10 )

= 10^n * ( 90 - 100 + 10 )

= 10^n * 0

= 0

Bài làm :

\(a,10^{n+1}-6.10^n\)

\(=10^n.10-6.10^n\)

\(=10^n.\left(10-6\right)\)

\(=10^n.4\)

\(b,90.10^n-10^{n+2}+10^{n+1}\)

\(=90.10^n-10^n.10^2+10^n.10\)

\(=10^n.\left(90-100+10\right)\)

\(=10^n.0\)

\(=0\)

Học tốt nhé

11 tháng 7 2018

a/ \(10^{n+1}+6.10^n=10^n.10+6.10^n=10^n\left(10+6\right)=10^n.16\)

b/ \(90.10^n-10^{n+2}+10^{n+1}=90.10^n-10^n.10^2+10^n.10=10^n\left(90-100+10\right)=0\)

c/ \(2,5.5^{n-1}.10+5^n-6.5^{n-1}=2,5.5^n.\dfrac{1}{5}+5^n-6.5^n.\dfrac{1}{5}=5^n\left(\dfrac{1}{2}+1+\dfrac{6}{5}\right)=5^n.\dfrac{3}{2}\)

11 tháng 7 2018

bn chắc câu c đúng ko?nhonhung

31 tháng 1 2017

a) 10n + 1 - 6.10n

= 10n . 10 - 6 . 10n

= 10n . (10 - 6)

= 10n . 4

b) 2n + 3 + 2n + 2 - 2n + 1 + 2n

= 2n . 23 + 2n . 22 - 2n . 2 + 2n . 1

= 2n . (8 + 4 - 2 + 1)

= 2n . 11

13 tháng 7 2015

\(d,2,5.5^{n-3}.2.5+5^n-6.5^{n-1}=5.5.5^{n-3}+5^n-6.5^{n-1}=5^2.5^{n-3}+5^n-6.5^{n-1}\)

  \(=5^{n-3+2}+5^n-6.5^{n-1}=5^{n-1}\left(1+5-6\right)=5^{n-1}.0=0\)

13 tháng 7 2015

a, \(10^{n+1}-6.10^n=10^n\left(10-6\right)=4.10^n\)

b. \(2^{n+3}+2^{n+2}-2^{n+1}+2^n=2^n\left(2^3+2^2-2+1\right)=2^n\left(8+4-2+1\right)=11.2^n\)

 

23 tháng 6 2015

các bạn ko phải giải đâu để sơn tự làm

23 tháng 6 2015

90.10n-10n-2+10n+1=10n-2.(90.102-1+103)=10n-2..9999=9999000...0(n-2 chữ số 0)

23 tháng 5 2020

\(a, 10^{n+1} -6.10 ^n\)

= \(10^n (10-6)=4.10^n\)

\(B/ 2^{n+3} + 2^{n+2} - 2^{n+1} +2^n\)

= \(2^n (2^3+2^2-2+1)\)

= \(2^n (8+4-2+1)\)

\(= 11.2^n\)

\(C/ 90.10^k - 10^{k +2} + 10^{k +1} \)

\(= 10^k(90-2+1)\)

= \(89.10^k\)

\(D/ 2,5 . 5^{n-3} . 10+5^n -6 .5^{n-1}\)

\(= 5.5.5^{n-3} +5^n-6.5^{n-1}\)

= \(5^2 .5^{n-3}+5^n-6.5^{n-1} \)

= \(5^{n-3+2}+5^n -6.5^{n-1}\)

\(= 5^{n-1}(1+5-6)\)

= \(5^{n-1}.0\)

= 0

24 tháng 5 2020

cảm ơn ạ

6 tháng 7 2020

Bài làm:

a) \(M=90.10^n-10^{n+2}+10^{n+1}\)

\(M=9.10.10^n-10^{n+2}+10^{n+1}\)

\(M=10^{n+1}\left(9-10+1\right)\)

\(M=10^{n+1}.0=0\)

b) \(N=x\left(x+y\right)-y\left(x+y\right)\)

\(N=\left(x-y\right)\left(x+y\right)\)

\(N=x^2-y^2\)

c) \(P=y\left(x^{n-1}+y^{n-1}\right)-x^{n-1}\left(x+y\right)\)

\(P=x^{n-1}y+y^n-x^n-x^{n-1}y\)

\(P=y^n-x^n\)

Học tốt!!!!

1 tháng 3 2017

1a) \(10^{n+1}-6\cdot10^n\)

\(=10^n\cdot10-6\cdot10^n\)

= \(10^n\left(10-6\right)\)

\(=10^n\cdot4\)

b) \(2^{n+3}+2^{n+2}-2^{n+1}+2^n\)

\(=2^n\cdot2^3+2^n\cdot2^2-2^n\cdot2+2^n\)

\(=2^n\left(2^3+2^2-2+1\right)\)

\(=2^n\cdot11\)

c) \(90\cdot10^k-10^{k+2}+10^{k+1}\)

\(=90\cdot10^k-10^k\cdot10^2+10^k\cdot10\)

\(=10^k\left(90-10^2+10\right)=0\)

d) \(2,5\cdot5^{n-3}\cdot10+5^n-6\cdot5^{n-1}\)

\(=\dfrac{2,5\cdot10\cdot5^n}{5^3}+5^n-\dfrac{6\cdot5^n}{5}\)

\(=\dfrac{5^n}{5}+5^n-\dfrac{6\cdot5^n}{5}\)

\(=\dfrac{5^n+5^n\cdot5-6\cdot5^n}{5}=\dfrac{5^n\left(5-6\right)+5^n}{5}=0\)

2. \(M+\left(6x^2-4xy\right)=7x^2-8xy+y^2\)

\(M=\left(7x^2-8xy+y^2\right)-\left(6x^2-4xy\right)\)

\(M=7x^2-8xy+y^2-6x^2+4xy\)

\(M=7x^2-6x^2-8xy+4xy+y^2\)

\(M=x^2-4xy+y^2\)

1 tháng 3 2017

Mk cảm ơn bn nhiều lắm ạ Lê Mỹ Linh

7 tháng 4 2017

a) Ta có:

\(90.10^k-10^{k+2}+10^{k+1}\)

\(=90.10^k-10^k.10^2+10^k.10\)

\(=10^k\left(90-10^2+10\right)\)

\(=10^k.0=0\)

b) Ta có:

\(2,5.5^{n-3}.10+5^n-6.5^{n-1}\)

\(=2,5.10.5^{n-3}+5^n-6.5^{n-1}\)

\(=5.5.5^{n-3}+5^n-6.5^{n-1}\)

\(=5^2.5^{n-3}+5^n-6.5^{n-1}\)

\(=5^{n-3+2}+5^n-6.5^{n-1}\)

\(=5^{n-1}\left(1+5-6\right)\)

\(=5^{n-1}.0=0\)

7 tháng 4 2017

a) Rút gọn biểu thức:

\(90\times10^k-10^{k+2}+10^{k+1}=90\times10^k-10^k\times10^2+10^k\times10\) \(=10^k\times\left(90-10^2+10\right)\) \(=10^k\times\left(90-100+10\right)\) \(=10^k\times0=0\)

b) Rút gọn biểu thức:

\(2,5\times5^{n-3}\times10+5^n-6\times5^{n-1}=2,5\times\dfrac{5^n}{5^3}\times10+5^n-6\times\dfrac{5^n}{5}\) \(=2,5\times\dfrac{5^n}{125}\times10+5^n-\dfrac{6}{5}\times5^n\) \(=0,2\times5^n+5^n-1,2\times5^n\) \(=5^n\times\left(0,2+1-1,2\right)=5^n\times0=0\)