K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2015

a2 + b+ (a + b)= c+ d2 + (c +d)2 => 2.(a+ b2) + 2ab = 2.(c+ d2) + 2cd

=> a+ b+ ab = c+ d+ cd   (1)

+) a+ b+ (a + b)4 = (a2 + b2)2  - 2a2.b2 + (a + b)4 = [(a+ b2)2 - a2.b2] + [(a + b)- a2.b2]

= (a2 + b2 - ab). (a2 + b2 + ab) +  [(a + b)2 - ab].[(a+ b)+ ab]

=  (a2 + b- ab). (a+ b2 + ab) + (a2 + b2 + ab). (a2 + b+ 3ab) = (a+ b+ ab). [(a2 + b- ab) + (a2 + b2 + 3ab)]

= 2.(a+ b2 + ab).(a2 + b2 + ab) = 2.(a2 + b2 + ab)2           (2)

Tương tự: c+ d4 + (c+d)4 = 2. (c2 + d2 + cd)2   (3)

Từ (1)(2)(3) => đpcm

26 tháng 7 2021

Đây nhé! Tích giúp c nhaundefined

26 tháng 7 2021

batngo

17 tháng 8 2020

a) Áp dụng Cauchy Schwars ta có:

\(M=\frac{a^2}{a+1}+\frac{b^2}{b+1}+\frac{c^2}{c+1}\ge\frac{\left(a+b+c\right)^2}{a+b+c+3}=\frac{9}{6}=\frac{3}{2}\)

Dấu "=" xảy ra khi: a = b = c = 1

17 tháng 8 2020

b) \(N=\frac{1}{a}+\frac{4}{b+1}+\frac{9}{c+2}\ge\frac{\left(1+2+3\right)^2}{a+b+c+3}=\frac{36}{6}=6\)

Dấu "=" xảy ra khi: x=y=1

1 tháng 2 2021

Ta có: a + b + c = 0

\(\Rightarrow\) (a + b + c)2 = 0

\(\Leftrightarrow\) a2 + b2 + c2 + 2ab + 2bc + 2ac = 0

\(\Leftrightarrow\) 2009 + 2(ab + bc + ac) = 0

\(\Leftrightarrow\) ab + bc + ac = \(\dfrac{-2009}{2}\)

\(\Leftrightarrow\) (ab + bc + ac)2 = \(\left(\dfrac{-2009}{2}\right)^2\)

\(\Leftrightarrow\) a2b2 + b2c2 + a2c2 + 2abc(a + b + c) = \(\left(\dfrac{-2009}{2}\right)^2\)

\(\Leftrightarrow\) a2b2 + b2c2 + c2a2 = \(\left(\dfrac{-2009}{2}\right)^2\)    (Vì a + b + c = 0)

Lại có: a2 + b2 + c2 = 2009

\(\Rightarrow\) (a2 + b2 + c2)2 = 20092

\(\Leftrightarrow\) a4 + b4 + c4 + 2(a2b2 + b2c2 + c2a2) = 20092

\(\Leftrightarrow\) a4 + b4 + c4 + 2.\(\dfrac{2009^2}{4}\) = 20092

\(\Leftrightarrow\) a4 + b4 + c4 = 20092 - \(\dfrac{2009^2}{2}\) = 2018040,5

Chúc bn học tốt!

11 tháng 1 2022

Ta có a+b+c=0⇔(a+b+c)2=0⇔a2+b2+c2+2(ab+bc+ac)=0a+b+c=0⇔(a+b+c)2=0⇔a2+b2+c2+2(ab+bc+ac)=0

+) Nếu a2+b2+c2=2a2+b2+c2=2 thì ab+bc+ac=−22=−1⇔(ab+bc+ac)2=1⇔a2b2+b2c2+c2a2+2abc(a+b+c)=1ab+bc+ac=−22=−1⇔(ab+bc+ac)2=1⇔a2b2+b2c2+c2a2+2abc(a+b+c)=1

⇔a2b2+b2c2+c2a2=1⇔a2b2+b2c2+c2a2=1

Ta có : (a2+b2+c2)2=a4+b4+c4+2(a2b2+b2c2+c2a2)=4(a2+b2+c2)2=a4+b4+c4+2(a2b2+b2c2+c2a2)=4

⇔a4+b4+c2+2=4⇔a4+b4+c4=2⇔a4+b4+c2+2=4⇔a4+b4+c4=2

+ Nếu a2+b2+c2=1a2+b2+c2=1 làm tương tự