K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2015

a2 + b+ (a + b)= c+ d2 + (c +d)2 => 2.(a+ b2) + 2ab = 2.(c+ d2) + 2cd

=> a+ b+ ab = c+ d+ cd   (1)

+) a+ b+ (a + b)4 = (a2 + b2)2  - 2a2.b2 + (a + b)4 = [(a+ b2)2 - a2.b2] + [(a + b)- a2.b2]

= (a2 + b2 - ab). (a2 + b2 + ab) +  [(a + b)2 - ab].[(a+ b)+ ab]

=  (a2 + b- ab). (a+ b2 + ab) + (a2 + b2 + ab). (a2 + b+ 3ab) = (a+ b+ ab). [(a2 + b- ab) + (a2 + b2 + 3ab)]

= 2.(a+ b2 + ab).(a2 + b2 + ab) = 2.(a2 + b2 + ab)2           (2)

Tương tự: c+ d4 + (c+d)4 = 2. (c2 + d2 + cd)2   (3)

Từ (1)(2)(3) => đpcm

30 tháng 9 2018

Câu 4 : 

       Ta có : a+b+c=0

​​=> a+b=-c

Lại có : a3+b3=(a+b)3-3ab(a+b)

=> a3+b3+c3=(a+b)3-3ab(a+b)+c3

                    =-c3-3ab. (-c)+c3

                    =3abc

Vậy a3+b3+c3=3abc với a+b+c=0

5 tháng 4 2020

a, Ta có : BĐT \(a^2+b^2\ge2ab\) = BĐT cauchuy .

-> Áp dụng BĐT cauchuy ta được :

\(\left\{{}\begin{matrix}a^4+b^4\ge2\sqrt{a^4b^4}=2a^2b^2\\c^4+d^4\ge2\sqrt{c^4d^4}=2c^2d^2\end{matrix}\right.\)

- Cộng 2 bpt lại ta được :

\(a^4+b^4+c^4+d^4\ge2a^2b^2+2c^2d^2=2\left(\left(ab\right)^2+\left(cd\right)^2\right)\)

- Mà \(\left(ab\right)^2+\left(cd\right)^2\ge2abcd\)

=> \(a^4+b^4+c^4+d^4\ge2.2abcd=4abcd\)

b, CMTT câu 1 .

- Áp dụng BĐT cauchuy ta được :

\(\left\{{}\begin{matrix}a^2+1\ge2a\\b^2+1\ge2b\\c^2+1\ge2c\end{matrix}\right.\)

- Nhân 3 bpt trên lại ta được :

\(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2.2.2abc=8abc\)

5 tháng 8 2015

a) Ta có: (a + b + c + d)(a - b - c +d )=( (a + d) + (b + c) )( (a + d) - (b + c) )

                                                     =(a + d )- (b +c )2                             (1)

              (a - b + c - d)(a + b - c - d)=(a - d)- (b - c)2                                  (2)

Từ (1) và (2)  => a+ 2ad + d- b- 2bc - c2=a- 2ad + d- b+ 2bc - c2

4ad=4bc => ad=bc <=> \(\frac{a}{c}=\frac{b}{d}\)  (đpcm)

 

17 tháng 1 2018

Ta có a^2 + b^2 + (a - b)^2= c^2 + d^2 + (c - d)^2.
=> a^4+b^4+(a-b)^4+2[a^2b^2+a^2(a-b)^2+b^2(a-b)2]=

=c^4+d^4+(c-d)^4+2[c^2d^2+c^2(c-d)^2+d^2(c-d)^2

<=>a^4+b^4+(a-b)^4+2[a^2b^2+(a^2+b^2)(a-b)^2]

=c^4+d^4+(c-d)^4+2[c^2d^2+(c^2+d^2)(c-d)^2

Lại có a^2 + b^2 + (a - b)^2 = c^2 + d^2 + (c - d)^2.

=> 2(a^2+b^2-ab) =2(c^2+d^2-cd)

=>a^2+b^2-ab =c^2+d^2-cd

=>(a^2+b^2)2+a^2b^2-2ab(a^2+b^2)=(c^2+d^2)^2+c^2d^2-2cd(c^2+d^2).

=>a^2b^2+(a^2+b^2)(a^2+b^2-2ab)=c^2d^2+(c^2+d^2)(c^2+d^2-2cd)

=>a^2b^2+(a^2+b^2)(a-b)^2=c^2d^2+(c^2+d^2)(c-d)^2

Từ đó bạn sẽ có đpcm

25 tháng 1 2018

Cảm ơn bạn,mình làm được rồi

AH
Akai Haruma
Giáo viên
25 tháng 2 2019

Lời giải:
\(a^4+b^4+c^4< 2(a^2b^2+b^2c^2+c^2a^2)\)

\(\Leftrightarrow a^4+b^4+c^4-2a^2b^2-2b^2c^2-2a^2c^2< 0\)

\(\Leftrightarrow (a^4+b^4+2a^2b^2)-4a^2b^2+c^4-(2b^2c^2+2c^2a^2)< 0\)

\(\Leftrightarrow (a^2+b^2)^2-2c^2(a^2+b^2)+c^4-4a^2b^2< 0\)

\(\Leftrightarrow (a^2+b^2-c^2)^2-(2ab)^2< 0\)

\(\Leftrightarrow (a^2+b^2-c^2-2ab)(a^2+b^2-c^2+2ab)< 0\)

\(\Leftrightarrow [(a-b)^2-c^2][(a+b)^2-c^2]< 0\)

\(\Leftrightarrow (a-b+c)(a-b-c)(a+b-c)(a+b+c)< 0\)

\(\Leftrightarrow (a+c-b)(b+c-a)(a+b-c)>0\)

Từ đây ta thấy có 2 TH xảy ra

TH1: cả 3 thừa số \(a+c-b, b+c-a, a+b-c\) đều dương

\(\Rightarrow a+b>c; b+c>a; c+a>b\) nên $a,b,c$ có thể là độ dài của $3$ cạnh tam giác

TH2: Trong 3 thừa số có một thừa số dương, 2 thừa số âm. Không mất tổng quát, giả sử:

\(\left\{\begin{matrix} a+c-b>0\\ b+c-a< 0\\ a+b-c< 0\end{matrix}\right.\Rightarrow (b+c-a)+(a+b-c)< 0\)

\(\Rightarrow 2b< 0\Rightarrow b< 0\) (trái với đề bài- loại)

Vậy tồn tại tam giác có độ dài các cạnh là $a,b,c$

25 tháng 2 2019

Tại sao

(a+c-b ) (b+c -a ) (a+b -c)>0

+)Theo bài ta có:a2+b2+(a+b)2=c2+d2+(c+d)2

                  =>(a2)2+(b2)2+[(a+b)2 ]2=(c2)2+(d2)2+[(c+d)2 ]2

                =>a4+b4+(a+b)4=c4+d4+(c+d)4(đpcm)

"Study well" 

13 tháng 2 2020

Sai rồi nha bạn nhưng dù sao cũng cảm ơn bạn 

4 tháng 9 2017

CMR là j

4 tháng 9 2017

chứng minh rằng

4 tháng 8 2015

  a+b+c+d=0 
=>a+b=-(c+d) 
=> (a+b)^3=-(c+d)^3 
=> a^3+b^3+3ab(a+b)=-c^3-d^3-3cd(c+d) 
=> a^3+b^3+c^3+d^3=-3ab(a+b)-3cd(c+d) 
=> a^3+b^3+c^3+d^3=3ab(c+d)-3cd(c+d) ( vi a+b = - (c+d)) 
==> a^3 +b^^3+c^3+d^3==3(c+d)(ab-cd) (dpcm)