Tìm max P=√(3-x)+x Mọi người giúp mk vs ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(6-2\left|1+3x\right|\le6\)'
Max \(A=6\Leftrightarrow1+3x=0\)
\(\Rightarrow3x=-1\)
\(\Rightarrow x=\frac{-1}{3}\)
\(\left|x-2\right|+\left|x-5\right|\ge0\)
Max \(B=0\Leftrightarrow\hept{\begin{cases}x-2=0\\x-5=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\x=5\end{cases}}}\)
a/ ĐKXĐ: 2x - 1 >= 0 <=> 2x > 1 <=> x>= 1/2
\(\sqrt{2x-1}=\sqrt{5}\Leftrightarrow2x-1=5\Leftrightarrow2x=6\Leftrightarrow x=3\left(tm\right)\)
b/ ĐKXĐ: x - 10 >= 0 <=> x >= 10
Biểu thức trong căn luôn nhận giá trị dương => vô nghiệm
c/ ĐKXĐ: x - 5 >=0 <=> x >= 5
\(\sqrt{x-5}=3\Leftrightarrow x-5=9\Leftrightarrow x=14\left(tm\right)\)
a) \(\sqrt{2x-1}=\sqrt{5}\) (ĐK: \(x\ge\dfrac{1}{2}\))
\(\Leftrightarrow2x-1=5\)
\(\Leftrightarrow2x=6\)
\(\Leftrightarrow x=3\left(tm\right)\)
b) \(\sqrt{x-10}=-2\)
⇒ Giá trị của biểu thức trong căn luôn dương nên phương trình vô nghiệm
c) \(\sqrt{\left(x-5\right)^2}=3\)
\(\Leftrightarrow\left|x-5\right|=3\)
TH1: \(\left|x-5\right|=x-5\) với \(x-5\ge0\Leftrightarrow x\ge5\)
Pt trở thành:
\(x-5=3\) (ĐK: \(x\ge5\))
\(\Leftrightarrow x=3+5\)
\(\Leftrightarrow x=8\left(tm\right)\)
TH2: \(\left|x-5\right|=-\left(x-5\right)\) với \(x-5< 0\Leftrightarrow x< 0\)
Pt trở thành:
\(-\left(x-5\right)=3\) (ĐK: \(x< 5\))
\(\Leftrightarrow-x+5=3\)
\(\Leftrightarrow-x=-2\)
\(\Leftrightarrow x=2\left(tm\right)\)
Vậy: \(S=\left\{2;8\right\}\)
\(xy+3x-y=6\)
=> \(xy+3x-y-3=3\)
=> \(\left(xy+3x\right)-\left(y+3\right)=3\)
=> \(x\left(y+3\right)-\left(y+3\right)=3\)
=> \(\left(y+3\right)\left(x-1\right)=3\)
Mà x, y nguyên
=> \(x-1\)và \(y+3\)là số nguyên
=> \(\hept{\begin{cases}x-1=1\\y+3=3\end{cases}}\); \(\hept{\begin{cases}x-1=3\\y+3=1\end{cases}}\)và \(\hept{\begin{cases}x-1=-1\\y+3=-3\end{cases}}\)
=> \(\hept{\begin{cases}x=2\\y=0\end{cases}}\); \(\hept{\begin{cases}x=4\\y=-2\end{cases}}\)và \(\hept{\begin{cases}x=0\\y=-6\end{cases}}\)
Vậy cặp số nguyên (x;y) thỏa mãn là (2;0), (4;-2) và (0;-6)
Lời giải:
Gọi $C'(a,b)$ là ảnh của $C$ đối xứng qua $x=1$
$\overrightarrow{CC'}=(a+5,b+1)\perp \overrightarrow{u_d}(1,0)$
$\Rightarrow a+5+0(b+1)=0$
$\Leftrightarrow a=-5$
$C$ đối xứng với $C'$ qua $d$ thì $CC'$ cắt $d$ tại trung điểm của nó
$\Rightarrow \frac{b-1}{2}=1$
$\Leftrightarrow b=3$
Vậy $M'(-5,3)$
Bài làm:
đk: \(x\ge0\)
Ta có: Vì x không âm
=> \(-2x-2\sqrt{x}\le0\left(\forall x\right)\)
=> \(-2x-2\sqrt{x}+3\le3\left(\forall x\right)\)
=> \(P\le3\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(x=0\)
Vậy P max = 3 khi x = 0
ĐKXĐ: \(x\le3\)
\(P=\sqrt{3-x}-\left(3-x\right)+3=-\left(\sqrt{3-x}-\dfrac{1}{2}\right)^2+\dfrac{13}{4}\le\dfrac{13}{4}\)
\(P_{max}=\dfrac{13}{4}\) khi \(\sqrt{3-x}=\dfrac{1}{2}\Leftrightarrow x=\dfrac{11}{4}\)
Anh ơi anh!