K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2023

Ta đặt

  \(A=1\times3+3\times5+...+61\times63\)

\(6A=1\times3\times6+3\times5\times6+....+61\times63\times6\)

\(6A=1\times3\times6+3\times5\times\left(7-1\right)+...+61\times63\times\left(65-59\right)\)

\(6A=1\times3\times6+3\times5\times7-1\times3\times5+...+61\times63\times65-59\times61\times63\)

\(6A=1\times3\times6-1\times3\times5+61\times63\times65\)

\(6A=3+61\times63\times65\)

\(6A=3\times\left(1+61\times21\times65\right)\)

\(2A=83266\)

\(A=83266\div2=41633\)

24 tháng 3 2017

=3.2/1.3.2+3.2/3.5.2+...+3.2/49.51

=3/2.(2/1.3+2/3.5+2/5.7+...+2/49.51)

=3/2.(1-1/3+1/3-1/5+...+1/49-1/51)

=3/2.(1-1/51)

=3/2.50/51

=25/17

CHÚC BẠN HỌC GIỎI

K MÌNH NHÉ

24 tháng 3 2017

A=3/2(2/3.5+2/5.7+...+2/61.63)

=3/2(1/3-1/5+1/5-1/7+...+1/61-1/63)= 3/2(1/3-1/63)=3/2 x 20/63=10/21

Đs: 10/21

21 tháng 10 2017

giúp mình với

21 tháng 10 2017

Dễ mà bn , mình học dạng này òi

15 tháng 4 2016

3.2/1.3.2+3.2/3.5.2+3.2/5.7.2+...+3.2/49.51

3/2(2/1.3+2/3.5+2/5.7+....+2/49.51)

3/2(1-1/3+1/3-1/5+1/5-1/7+....+1/49-1/51)

3/2(1-1/51)

3/2  .    50/51

25/17

15 tháng 4 2016

áp dụng công thức nếu có thừa số thứ 2 ở mẫu trừ đi thừa số thứ 1 bằng số trên tử thi \(\frac{1}{a}-\frac{1}{b}\) ab ở đây là 2 thừa số ở mẫu

VD;3/1.3+3/3.5+...+3/49.51(vì tất cả mẫu trừ cho nhau đều =tử)

nên = 1/1-1/3+1/3+1/5+...+1/49-1/51

      =1-1/51

      =50/51

30 tháng 6 2020

Nhanh lên mình đang cần gấp lắm 

30 tháng 6 2020

Gấp lắm hả :V

\(A=\frac{3}{1\cdot3}+\frac{3}{3\cdot5}+\frac{3}{5\cdot7}+....+\frac{3}{2001\cdot2003}\)

\(=\frac{3}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{2001}-\frac{1}{2003}\right)\)

\(=\frac{3}{2}\left(1-\frac{1}{2003}\right)=\frac{6006}{4006}\)

2 tháng 1 2018

19333333333333465667

11 tháng 5 2017

\(A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{51}\)

\(A=1-\frac{1}{51}\)

\(A=\frac{50}{51}\)

11 tháng 5 2017

\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)

\(2A=3\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\right)\)

\(2A=3\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)

\(2A=3\left(1-\frac{1}{51}\right)\)

\(2A=3.\frac{50}{51}\)

\(2A=\frac{50}{17}\Rightarrow A=\frac{25}{17}\)'