cho hàm số f(x) = 5 x - 2 .không tính hãy so sánh f(3)và f(√8)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì hàm số f(x)=5x-2 đồng biến trên R nên nếu \(x_1< x_2\) thì \(y_1< y_2\)
mà \(3>\sqrt{8}\)
nên \(f\left(3\right)>f\left(\sqrt{8}\right)\)
Lời giải:
Vì $2>0$ nên $f(x)=2x-1$ là hàm đồng biến trên $R$
$\sqrt{3}-2-(\sqrt{5}-3)=1+\sqrt{3}-\sqrt{5}=1-\frac{2}{\sqrt{3}+\sqrt{5}}> 1-\frac{2}{1+1}=0$
$\Rightarrow \sqrt{3}-2> \sqrt{5}-3$
Vì hàm đồng biến nên $f(\sqrt{3}-2)> f(\sqrt{5}-3)$
\(y=f\left(x\right)=\left(\sqrt{3}+1\right)x-5\)
Vì \(\sqrt{3}+1>0\) nên hs đồng biến trên R
Mà \(2+\sqrt{3}< 3+\sqrt{3}\)
Vậy \(f\left(2+\sqrt{3}\right)< f\left(3+\sqrt{3}\right)\)
Hàm số y = -1,5 x 2 có a = -1,5 < 0
Vậy hàm số đồng biến trong khoảng x < 0, nghịch biến trong khoảng x > 0
Suy ra : f(-1,5) < f(-0,5), f(0,75) > f(1,5)
Ta có: 1<2
nên \(1-\sqrt{2}< 2-\sqrt{2}\)
\(\Leftrightarrow f\left(1-\sqrt{2}\right)>f\left(2-\sqrt{2}\right)\)(Vì hàm số y=f(x)=-x+4 nghịch biến trên R nên nếu \(x_1< x_2\) thì \(f\left(x_1\right)>f\left(x_2\right)\))
Ta có \(1-\sqrt{2}< 2-\sqrt{2}\) \(\Rightarrow-\left(1-\sqrt{2}\right)>-\left(2-\sqrt{2}\right)\) \(\Rightarrow-\left(1-\sqrt{2}\right)+4>-\left(2-\sqrt{2}\right)+4\) Mà \(f\left(1-\sqrt{2}\right)=-\left(1-\sqrt{2}\right)+4,f\left(2-\sqrt{2}\right)=-\left(2-\sqrt{2}\right)+4\)
\(\Rightarrow f\left(1-\sqrt{2}\right)>f\left(2-\sqrt{2}\right)\)
1.
y=f(-1)=3*(-1)-2=-5
y=f(0)=3*0-2=-2
y=f(-2)=3*(-2)-2=-8
y=f(3)=3*3-2=7
Câu 2,3a làm tương tự,chỉ việc thay f(x) thôi.
3b
Khi y=5 =>5=5-2*x=>2*x=0=> x=0
Khi y=3=>3=5-2*x=>2*x=2=>x=1
Khi y=-1=>-1=5-2*x=>2*x=6=>x=3
f(-1)=3.1-2=3-2=1
f(0)=3.0-2=0-2=-2
f(-2)=3.(-2)-2=-6-2=-8
f(3)=3.3-2=9-2=7
Ta có : \(f\left(3\right)=5\sqrt{9}-2\)
\(f\left(\sqrt{8}\right)=5\sqrt{8}-2\)
=> \(f\left(3\right)>f\left(8\right)\)
Vì f(x)=5x-2 đồng biến trên R nên khi \(x_1< x_2\) thì \(y_1< y_2\)
mà \(3>\sqrt{8}\)
nên \(f\left(3\right)>f\left(\sqrt{8}\right)\)