Chứng minh rằng hiệu ab-ba chia hết cho 9 với a>b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ab - ba = 10a + b - 10b + a
= 9a - 9b = 9 ( a - b ) với a>b =>. biểu thức đã cho luân chia hết 9
a) ab + ba
= 10a + b + 10b + a
= 11a + 11b = 11(a+b)
Chia hết cho a + b
a) ab + ba
= 10a + b + 10b + a
= 11a + 11b = 11(a+b)
Chia hết cho a + b
a, 10615 + 8 không chia hết cho 2 vì 8 ⋮ 2 nhưng 10615 không chia hết cho 2
10615 + 8 không chia hết cho 9 vì 1 + 6 + 1 + 5 + 8 = 21 không chia hết cho 9
c, B = 102010 - 4
10 \(\equiv\) 1 (mod 3)
102010 \(\equiv\) 12010 (mod 3)
4 \(\equiv\) 1(mod 3)
⇒ 102010 - 4 \(\equiv\) 12010 - 1 (mod 3)
⇒ 102010 - 4 \(\equiv\) 0 (mod 3)
⇒ 102010 - 4 \(⋮\) 3
Ta có: ab-ba=(10a+b)-(10b+a)=9a-9b, chia hết cho 9
Chúc bạn học giỏi nha!
Ta có :
ab - ba = 10a + b - (10b + a)
10 + b - 10b - a = ab - ba
=> 9a - 9b = ab - ba
9(a - b) chia hết cho 9 do có cơ số 9 (luôn đúng với mọi số a và b)
Vậy ab - ba chia hết cho 9 (đpcm)
Ta có : ab-ba = 10a+b - ( 10b+a )
10b- 10b-a = ab-ba
=> 9a-9b = ab-ba
9 ( a-b ) chia hết cho 9 vì có cơ số 9 ( luôn đúng với mọi số a và b )
Vậy ab-ba chia hết cho 9 ( đpcm )
a) ab + ba = 10a + b + 10b+ a = 11a + 11b = 11(a+b)
=> đpcm
b) ab - ba = 10a + b - 10b - a = (10a - a) - (10b - b) = 9a - 9b = 9(a - b)
=> đpcm
a,ab = 10a + b
ba = 10b + a
=>ab + ba = 11(a+b) chia het cho 11.
b,ab=10*a+b
ba=10*b+a
ab-ba=9*a-9*b=9*(a-b)=> ab-ba chia hết cho 9
a) Xét tổng ab + ba = (10 x a + b) + (10 x b + a)
= 11 x a + 11 x b
= (a +b) x 11 chia hết cho 11
b) Xét hiệu ab - ba = (10a + b) - (10b + a)
= 9 x a - 9 x b
= (a - b) x 9 chia hết cho 9
ab - ba = (10a+b)-(10b+a)=9a.9b chia het cho 9
thu lay vi du ra lam thi co ket qua ngay