K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(\dfrac{x^2+2x+1}{x^2+x}\)

\(=\dfrac{\left(x+1\right)^2}{x\left(x+1\right)}\)

\(=\dfrac{x+1}{x}\)

b) Ta có: \(\dfrac{x^2-4x+3}{x^2-x}\)

\(=\dfrac{\left(x-1\right)\left(x-3\right)}{x\left(x-1\right)}\)

\(=\dfrac{x-3}{x}\)

`a,`

`f(x)=x^2+4x+10`

\(\text{Vì }\)\(x^2\ge0\left(\forall x\right)\)

`->`\(x^2+4x+10\ge10>0\left(\forall\text{ x}\right)\)

`->` Đa thức không có nghiệm (vô nghiệm).

`c,`

`f(x)=5x^4+x^2+` gì nữa bạn nhỉ? Mình đặt vd là 1 đi nha :v.

Vì \(x^4\ge0\text{ }\forall\text{ }x\rightarrow5x^4\ge0\text{ }\forall\text{ }x\)

    \(x^2\ge0\text{ }\forall\text{ }x\)

`->`\(5x^4+x^2+1\ge1>0\text{ }\forall\text{ }x\)

`->` Đa thức vô nghiệm.

`b,`

`g(x)=x^2-2x+2017`

Vì \(x^2\ge0\text{ }\forall\text{ }x\)

`->`\(x^2-2x+2017\ge2017\text{ }\forall\text{ }x\)

`->` Đa thức vô nghiệm.

`d,`

`g(x)=4x^2004+x^2018+1`

Vì \(x^{2004}\ge0\text{ }\forall\text{ }x\rightarrow4x^{2004}\ge0\text{ }\forall\text{ }x\)

    \(x^{2018}\ge0\text{ }\forall\text{ }x\)

`->`\(4x^{2004}+x^{2018}+1\ge1>0\text{ }\forall\text{ }x\)

`->` Đa thức vô nghiệm.

10 tháng 4 2023

cảm ơn bn nha

 

18 tháng 10 2021

\(A=x^2+4x-21-x^2-4x+5=-16\\ B=-2\left(4x^2+20x+25\right)-\left(1-16x^2\right)\\ B=-8x^2-40x-50-1+16x^2=8x^2-40x-51\\ C=x^2\left(x^2-16\right)-\left(x^4-1\right)=x^4-16x^2-x^4+1=1-16x^2\\ D=x^3+1-\left(x^3-1\right)=2\\ E=x^3-3x^2+3x-1-x^3+1-9x^2+1=-12x^2+3x+1\)

18 tháng 11 2022

a: \(\dfrac{7x^3y^4}{35xy}=\dfrac{7xy\cdot x^2y^3}{7xy\cdot5}=\dfrac{x^2y^3}{5}\)

b: \(\dfrac{x^3-4x}{10-5x}=\dfrac{-x\left(x-2\right)\left(x+2\right)}{5\left(x-2\right)}=\dfrac{-x\left(x+2\right)}{5}=\dfrac{-x^2-2x}{5}\)

c: \(\dfrac{\left(x+2\right)\left(x+1\right)}{x^2-1}=\dfrac{\left(x+2\right)\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}=\dfrac{x+2}{x-1}\)

d: \(\left(x^2-x-2\right)\left(x-1\right)\)

\(=\left(x-2\right)\left(x+1\right)\left(x-1\right)\)

\(=\left(x^2-3x+2\right)\left(x+1\right)\)

=>\(\dfrac{x^2-x-2}{x+1}=\dfrac{x^2-3x+2}{x-1}\)

e: \(\dfrac{x^3+8}{x^2-2x+4}=\dfrac{\left(x+2\right)\left(x^2-2x+4\right)}{x^2-2x+4}=x+2\)

18 tháng 10 2021

Bài 3: 

b: \(x^2+2x+1=\left(x+1\right)^2\)

c: \(x^2-16=\left(x-4\right)\left(x+4\right)\)

d: \(\left(2x-1\right)^2-\left(x+3\right)^2\)

\(=\left(2x-1-x-3\right)\left(2x-1+x+3\right)\)

\(=\left(x-4\right)\left(3x+2\right)\)

23 tháng 11 2016

dài thế ai trả lời đc hả ?

23 tháng 11 2016

tu lam di luoi vua thoi

19 tháng 11 2024

Cưu là mình vs (x^2+x)^2-2(x^2+x)-15

`@` `\text {Ans}`

`\downarrow`

Gửi c!

loading...

loading...

loading...

27 tháng 6 2023

Bài 1: 

a) \(3x^2\left(2x^3-x+5\right)-6x^5-3x^3+10x^2\)

\(=6x^5-3x^3+10x^2-6x^5-3x^3+10x^2\)

\(=10x^2+10x^2\)

\(=20x^2\)

b) \(-2x\left(x^3-3x^2-x+11\right)-2x^4+3x^3+2x^2-22x\)

\(=-2x^4+6x^3+2x^2-22x-2x^4+3x^3+2x^2-22x\)

\(=-4x^4+9x^3+4x^2-44x\)