Tìm max của C=xy biết 3x+5y=12
Tìm GTNN của: C= x^4 -2x^3+3x^2-4x+2021
Tìm GTNN của D(x)=x^4 -x^2+2x+7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm max của C=xy biết 3x+5y=12
Tìm GTNN của: C= x^4 -2x^3+3x^2-4x+2021
Tìm GTNN của D(x)=x^4 -x^2+2x+7
\(A=x^2-6x+10\)
\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)
\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\) \(\forall x\in z\)
\(\Leftrightarrow A_{min}=1khix=3\)
\(B=3x^2-12x+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\) \(\forall x\in z\)
\(\Leftrightarrow B_{min}=-11khix=2\)
Bài 2:
a: \(A=x^2+8x\)
\(=x^2+8x+16-16\)
\(=\left(x+4\right)^2-16\ge-16\)
Dấu '=' xảy ra khi x=-4
b: \(B=-2x^2+8x-15\)
\(=-2\left(x^2-4x+\dfrac{15}{2}\right)\)
\(=-2\left(x^2-4x+4+\dfrac{7}{2}\right)\)
\(=-2\left(x-2\right)^2-7\le-7\)
Dấu '=' xảy ra khi x=2
c: \(C=x^2-4x+7\)
\(=x^2-4x+4+3\)
\(=\left(x-2\right)^2+3\ge3\)
Dấu '=' xảy ra khi x=2
e: \(E=x^2-6x+y^2-2y+12\)
\(=x^2-6x+9+y^2-2y+1+2\)
\(=\left(x-3\right)^2+\left(y-1\right)^2+2\ge2\)
Dấu '=' xảy ra khi x=3 và y=1
Bài 1:
a: A=x^2-6x+10
=x^2-6x+9+1
=(x-3)^2+1>=1
Dấu = xảy ra khi x=3
b: \(B=3x^2-12x+1\)
=3(x^2-4x+1/3)
=3(x^2-4x+4-11/3)
=3(x-2)^2-11>=-11
Dấu = xảy ra khi x=2
\(A=x^4-2x^3+3x^2-4x+7\)
\(=\left(x^4-2x^3+x^2\right)+\left(2x^2-4x+2\right)+5\)
\(=\left(x^2-x\right)^2+2\left(x-1\right)^2+5\ge5\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x^2-x=0\\x-1=0\end{cases}\Rightarrow x=1}\)
Vậy \(A_{min}=5\Leftrightarrow x=1\)
a) \(x^2+6x+17=x^2+2.x.3+3^2+6\)
\(=\left(x+3\right)^2+6\ge6\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x+3\right)^2=0\)
\(\Leftrightarrow x+3=0\)
\(\Leftrightarrow x=-3\)
Vậy : GTNN của \(x^2+6x+17=6\Leftrightarrow x=-3\)
b) \(x^2-8x+20=x^2-2.x.4+4^2+4\)
\(=\left(x-4\right)^2+4\ge4\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-4\right)^2=0\)
\(\Leftrightarrow x-4=0\)
\(\Leftrightarrow x=4\)
Vậy GTNN của \(x^2-8x+20=4\Leftrightarrow x=4\)