Trong không gian \(Oxyz\), cho điểm \(A\left(-1;2;1\right)\) .Mặt phẳng qua \(A\) và vuông góc với trục \(Ox\) là:
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mặt phẳng (P) qua A và vuông góc d có phương trình:
\(2\left(x-1\right)+2\left(y+1\right)+1\left(z-1\right)=0\)
\(\Leftrightarrow2x+2y+z-1=0\)
Đường thẳng d' song song d và đi qua B (nên d' vuông góc (P)) có dạng:
\(\left\{{}\begin{matrix}x=4+2t\\y=2+2t\\z=-2+t\end{matrix}\right.\)
\(\Rightarrow\) Giao điểm C của d' và (P) thỏa mãn:
\(2\left(4+2t\right)+2\left(2+2t\right)-2+t-1=0\Rightarrow t=-1\Rightarrow C\left(2;0;-3\right)\)
\(\Rightarrow\overrightarrow{AC}=\left(1;1;-4\right)\Rightarrow\) là 1 vtcp của \(\Delta\Rightarrow\) D là đáp án đúng
Phương trình d dạng tham số: \(\left\{{}\begin{matrix}x=1+2t\\y=1+2t\\z=-1+t\end{matrix}\right.\)
Gọi \(M\left(1+2t;1+2t;-1+t\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AM}=\left(2t-5;2t+1;t-1\right)\\\overrightarrow{BM}=\left(2t+1;2t+1;t+5\right)\end{matrix}\right.\)
\(\Rightarrow P=\sqrt{\left(2t-5\right)^2+\left(2t+1\right)^2+\left(t-1\right)^2}+\sqrt{\left(2t+1\right)^2+\left(2t+1\right)^2+\left(t+5\right)^2}\)
\(=\sqrt{9t^2-18t+27}+\sqrt{9t^2+18t+27}\)
\(=\sqrt{\left(3-3t\right)^2+18}+\sqrt{\left(3+3t\right)^2+18}\)
\(\ge\sqrt{\left(3-3t+3+3t\right)^2+4.18}=6\sqrt{3}\)
Để tìm phương trình đường thẳng Δm, ta thay các giá trị của x, y, z vào phương trình của Δm:
x = 1 - m + (m - 1)t
y = 3 - m + (m + 1)t
z = m - mt
Thay A(5, 3, 1) vào phương trình của Δm:
5 = 1 - m + (m - 1)t
3 = 3 - m + (m + 1)t
1 = m - mt
Từ đó, ta có hệ phương trình:
4 = (m - 1)t
0 = 2t
-4 = 2mt
Giải hệ phương trình này, ta được t = 0 và m = 1.
Thay t = 0 và m = 1 vào phương trình của Δm, ta có:
x = 1 - 1 + (1 - 1) * 0 = 0
y = 3 - 1 + (1 + 1) * 0 = 2
z = 1 - 1 * 0 = 1
Vậy phương trình đường thẳng Δm là:
x = 0
y = 2
z = 1
Do đó, đáp án là A.
Đừng để phải nói ra toàn bộ các câu bạn trả lời, thậm chí có cả GP đều được bạn chép chatgpt đấy .
Trục Ox nhận \(\left(1;0;0\right)\) là 1 vtcp
Do đó mặt phẳng vuông góc Ox nhận \(\left(1;0;0\right)\) là 1 vtpt
Phương trình:
\(1\left(x+1\right)+0\left(y-2\right)+0\left(z-1\right)=0\)
\(\Leftrightarrow x+1=0\)