chứng minh 20052005+1001 chia hết cho 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
e=20052005 +1001 chia hết cho 9
vì 2005:9 dư 2=>20052005 :9 dư 2 (1)
vì 1001:9 dư 7 (2)
từ (1),(2)=>(20052005+1001):9 dư 0
=>E=20052005+1001 chia hết cho 9
Gọi 3 số tự nhiên liên tiếp đó là n-1, n, n+1 (n thuộc N*)
Ta phải chứng minh A = (n-1)n(n+1) chia hết cho 6
n-1 và n là 2 số tự nhiên liên tiếp nên 1 trong 2 số phải chia hết cho 2
=> A chia hết cho 2
n-1, n và n+1 là 3 số tự nhiên liên tiếp nên 1 trong 3 số phải chia hết cho 3 => A chia hết cho 3 ( Đpcm)
+) Nếu n chia hết cho 3 => n1001 chia hết cho 3 => n1001 - n chia hết cho 3
+)Ta có: n1000 = (n500)2 là số chính phương nên n1000 chia cho 3 dư 1 => n1000 = 3k + 1
Nếu n chia cho dư 1 => n = 3h + 1 => n1001 = n1000.n = (3k+1)(3h +1) = 9kh + 3(k +h) + 1 => n1001 chia cho 3 dư 1
=> n1001 - n chia hết cho 3
Nếu n chia cho 3 dư 2 => n = 3h + 2 => n1001 = 9kh + 3(k +h) + 2; n = 3h + 2
=> n1001 - n chia hết cho 3
Vậy với mọi n thuộc N thì n1001 - n chia hết cho 3
bailam
- Nếu n chia hết cho 3
=> n1001 chia hết cho 3
=> n1001 - n chia hết cho 3
- Ta có: n1000 = (n500)2 là số chính phương nên n1000 chia cho 3 dư 1
=> n1000 = 3k + 1
Nếu n chia cho dư 1
=> n = 3h + 1
=> n1001 = n1000.n = (3k+1)(3h +1) = 9kh + 3(k +h) + 1
=> n1001 chia cho 3 dư 1
=> n1001 - n chia hết cho 3
Nếu n chia cho 3 dư 2 => n = 3h + 2 => n1001 = 9kh + 3(k +h) + 2; n = 3h + 2
=> n1001 - n chia hết cho 3
Vậy................
hok tốt
ta co 2005 :9 dư 7
=>20052005:9 dư 7
1001:9 dư 2
=>1001+20052005:9 dư 0
=>đpcm