K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2015

a) cm tam giac EDA= tam giac EFC ( c=g=c)--> AD= CF ma BD= AD ( D la trung diem AB)---? CF=BD

b)cm AB//CF : ta co goc EAD = goc ECF ( tam giac EDA = tam giac EFC ) ma 2 goc nam o vi tri so le trong nen AD//CF hay AB//CF

xet tam giac BDC va tam giac FCD ta co:

BD= CF ( cm cau a); DC = DC ( canh chung ),goc BDC= goc DCF ( 2 goc so le trong va AB//CF)

--> tam giac BDC = tam giac FCD ( c-g-c)

c) ta co BC= DF ( tam giac BDC= tam giac FCD )

        ma DE=1/2 DF ( E la trung diem DF)

nen DE=1/2 BC

Vẽ Đi Cho Mình Tham Khảo Với

15 tháng 12 2016

a) Xét t/g AME và t/g DMB có:

AM=DM (gt)

AME=DMB ( đối đỉnh)

ME=MB (gt)

Do đó, t/g AME = t/g DMB (c.g.c) (đpcm)

b) t/g AME = t/g DMB (câu a)

=> AE=BD (2 cạnh tương ứng) (1)

AEM=DBM (2 góc tương ứng)

Mà AEM và DBM là 2 góc ở vị trí so le trong nên AE // BC (2)

(1) và (2) là đpcm

c) Xét t/g AKE và t/g CKD có:

AEK=CDK (so le trong)

AE=CD ( cùng = BD)

EAK=DCK (so le trong)

Do đó, t/g AKE = t/g CKD (g.c.g) (đpcm)

d) Dễ dàng c/m t/g AMF = t/g DMC (c.g.c)

=> AF = DC (2 cạnh tương ứng)

AFM=DCM (2 góc tương ứng)

Mà AFM và DCM là 2 góc ở vị trí so le trong nên AF //BC

Lại có: AE // BC (câu b) suy ra AF trùng với AE hay A,E,F thẳng hàng (3)

Mà AF=DC=BD=AE (4)

Từ (3) và (4) => A là trung điểm của EF (đpcm)

15 tháng 12 2016

C.ơn p nha

b1: cho tam giác nhọn ABC.  Gọi D,E,F lần lượt là trung điểm của AC,AB,BCa) tứ giác BCDE là hình gì? vì sao?b) tứ giác BEDF là hình gì? vì sao?c) gọi H là trực tâm của tam giác ABC. M,N,P lần lượt là trung điểm của BH,CH,AH. cmr: tứ giác DEMN là hình chữ nhậtd) gọi O là giao điểm của MD và EN. cmr 3 điểm O,P,F thẳng hàngb2: cho tam giác ABC cân tại A. đường trung tuyến AI....
Đọc tiếp

b1: cho tam giác nhọn ABC.  Gọi D,E,F lần lượt là trung điểm của AC,AB,BC
a) tứ giác BCDE là hình gì? vì sao?
b) tứ giác BEDF là hình gì? vì sao?
c) gọi H là trực tâm của tam giác ABC. M,N,P lần lượt là trung điểm của BH,CH,AH. cmr: tứ giác DEMN là hình chữ nhật
d) gọi O là giao điểm của MD và EN. cmr 3 điểm O,P,F thẳng hàng
b2: cho tam giác ABC cân tại A. đường trung tuyến AI. E là trung điểm của AC, M là điểm đối xứng với I qua E.
a) cmr tứ giác AMCI là hình chữ nhật
b) AI cắt BM tại O. cmr OE // IC
b3: cho tam giác ABC vuông tại A, có góc B bằng 60 độ, AB = 3cm, AM là trung tuyến của tam giác.
a) Tính độ dài cạnh BC và số đo góc MAC
b) trung trực của cạnh BC cắt AB tại E và cắt AC tại F. chứng minh B với E đối xứng qua AC và FC = 2FA
c) gọi I là trung điểm của đoạn FC. K là trung điểm của đoạn FE. chứng minh tứ giác AMIK là hình chữ nhật và tính diện tích hình chữ nhật AMIK. 
d) P là trung điểm của FI, Q là trung điểm của FK. cmr 3 đường thẳng AQ,BF,MP đồng quy

0
AH
Akai Haruma
Giáo viên
13 tháng 1

Lời giải:

a. Áp dụng tính chất tia phân giác đối với tam giác $AMB, AMC$ thì:
$\frac{AD}{DB}=\frac{AM}{MB}$

$\frac{AE}{EC}=\frac{AM}{MC}$
Mà $MB=MC$ (do $M$ là trung điểm $BC$)

$\Rightarrow \frac{AD}{DB}=\frac{AE}{EC}$

$\Rightarrow DE\parallel BC$ (theo định lý Talet đảo) 

b.

Tam giác $ABM$ có $DI\parallel BM$ (do $DE\parallel BC$) nên áp dụng định lý Talet:

$\frac{DI}{BM}=\frac{AI}{AM}$

Tam giác $ACM$ có $IE\parallel CM$ (do $DE\parallel BC$) nên áp dụng định lý Talet:

$\frac{IE}{MC}=\frac{AI}{AM}$

$\Rightarrow \frac{DI}{BM}=\frac{IE}{MC}$

Mà $BM=CM$ nên $DI=IE$ 

$\Rightarrow I$ là trung điểm $DE$>

AH
Akai Haruma
Giáo viên
13 tháng 1

Hình vẽ:

17 tháng 12 2019

kết bn trả lời

a: Xét tứ giác BDCE có

I là trung điểm của BC

I là trung điểm của DE

Do đó: BCDE là hình bình hành

Suy ra: BD=CE và BD//CE

b: Ta có: BD//CE

nên góc ECB=góc DBI

mà góc DBI=góc ACB

nên góc ECB=góc ACB

hay CB là phân giác của góc ACE