Cho tam giác ABC, D là trung điểm của AB, E là trung điểm của AC. Vẽ điểm F sao cho E là trung điểm của DF. Chứng minh rằng:
a/DB=CF
b/tam giác BDC = tam giác FCD
c/DE//BC và DE=1/2 BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét t/g AME và t/g DMB có:
AM=DM (gt)
AME=DMB ( đối đỉnh)
ME=MB (gt)
Do đó, t/g AME = t/g DMB (c.g.c) (đpcm)
b) t/g AME = t/g DMB (câu a)
=> AE=BD (2 cạnh tương ứng) (1)
AEM=DBM (2 góc tương ứng)
Mà AEM và DBM là 2 góc ở vị trí so le trong nên AE // BC (2)
(1) và (2) là đpcm
c) Xét t/g AKE và t/g CKD có:
AEK=CDK (so le trong)
AE=CD ( cùng = BD)
EAK=DCK (so le trong)
Do đó, t/g AKE = t/g CKD (g.c.g) (đpcm)
d) Dễ dàng c/m t/g AMF = t/g DMC (c.g.c)
=> AF = DC (2 cạnh tương ứng)
AFM=DCM (2 góc tương ứng)
Mà AFM và DCM là 2 góc ở vị trí so le trong nên AF //BC
Lại có: AE // BC (câu b) suy ra AF trùng với AE hay A,E,F thẳng hàng (3)
Mà AF=DC=BD=AE (4)
Từ (3) và (4) => A là trung điểm của EF (đpcm)
Lời giải:
a. Áp dụng tính chất tia phân giác đối với tam giác $AMB, AMC$ thì:
$\frac{AD}{DB}=\frac{AM}{MB}$
$\frac{AE}{EC}=\frac{AM}{MC}$
Mà $MB=MC$ (do $M$ là trung điểm $BC$)
$\Rightarrow \frac{AD}{DB}=\frac{AE}{EC}$
$\Rightarrow DE\parallel BC$ (theo định lý Talet đảo)
b.
Tam giác $ABM$ có $DI\parallel BM$ (do $DE\parallel BC$) nên áp dụng định lý Talet:
$\frac{DI}{BM}=\frac{AI}{AM}$
Tam giác $ACM$ có $IE\parallel CM$ (do $DE\parallel BC$) nên áp dụng định lý Talet:
$\frac{IE}{MC}=\frac{AI}{AM}$
$\Rightarrow \frac{DI}{BM}=\frac{IE}{MC}$
Mà $BM=CM$ nên $DI=IE$
$\Rightarrow I$ là trung điểm $DE$>
a: Xét tứ giác BDCE có
I là trung điểm của BC
I là trung điểm của DE
Do đó: BCDE là hình bình hành
Suy ra: BD=CE và BD//CE
b: Ta có: BD//CE
nên góc ECB=góc DBI
mà góc DBI=góc ACB
nên góc ECB=góc ACB
hay CB là phân giác của góc ACE
a) cm tam giac EDA= tam giac EFC ( c=g=c)--> AD= CF ma BD= AD ( D la trung diem AB)---? CF=BD
b)cm AB//CF : ta co goc EAD = goc ECF ( tam giac EDA = tam giac EFC ) ma 2 goc nam o vi tri so le trong nen AD//CF hay AB//CF
xet tam giac BDC va tam giac FCD ta co:
BD= CF ( cm cau a); DC = DC ( canh chung ),goc BDC= goc DCF ( 2 goc so le trong va AB//CF)
--> tam giac BDC = tam giac FCD ( c-g-c)
c) ta co BC= DF ( tam giac BDC= tam giac FCD )
ma DE=1/2 DF ( E la trung diem DF)
nen DE=1/2 BC
Vẽ Đi Cho Mình Tham Khảo Với