K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2015

a) cm tam giac EDA= tam giac EFC ( c=g=c)--> AD= CF ma BD= AD ( D la trung diem AB)---? CF=BD

b)cm AB//CF : ta co goc EAD = goc ECF ( tam giac EDA = tam giac EFC ) ma 2 goc nam o vi tri so le trong nen AD//CF hay AB//CF

xet tam giac BDC va tam giac FCD ta co:

BD= CF ( cm cau a); DC = DC ( canh chung ),goc BDC= goc DCF ( 2 goc so le trong va AB//CF)

--> tam giac BDC = tam giac FCD ( c-g-c)

c) ta co BC= DF ( tam giac BDC= tam giac FCD )

        ma DE=1/2 DF ( E la trung diem DF)

nen DE=1/2 BC

Vẽ Đi Cho Mình Tham Khảo Với

11 tháng 2 2020

b, Cho BH = 8cm, AH = 10cm. Tính AH này là sao , biết AH mà còn bắt tính AH

a: Xet ΔCBD có

CA vừa là đường cao, vừa là trung tuyến

=>ΔCBD cân tại C

=>CA là phân giác củagóc BCD

b: Xét ΔCEI vuông tại E và ΔCFI vuông tại F có

CI chung

góc ECI=góc FCI

=>ΔCEI=ΔCFI

=>CE=CF

=>ΔCEF cân tạiC

Xet ΔCDB có CE/CD=CF/CB

nên EF//DB

c: IE=IF

IF<IB

=>IE<IB

a: Xét tứ giác BDCE có

I là trung điểm của BC

I là trung điểm của DE

Do đó: BCDE là hình bình hành

Suy ra: BD=CE và BD//CE

b: Ta có: BD//CE

nên góc ECB=góc DBI

mà góc DBI=góc ACB

nên góc ECB=góc ACB

hay CB là phân giác của góc ACE

15 tháng 12 2016

a) Xét t/g AME và t/g DMB có:

AM=DM (gt)

AME=DMB ( đối đỉnh)

ME=MB (gt)

Do đó, t/g AME = t/g DMB (c.g.c) (đpcm)

b) t/g AME = t/g DMB (câu a)

=> AE=BD (2 cạnh tương ứng) (1)

AEM=DBM (2 góc tương ứng)

Mà AEM và DBM là 2 góc ở vị trí so le trong nên AE // BC (2)

(1) và (2) là đpcm

c) Xét t/g AKE và t/g CKD có:

AEK=CDK (so le trong)

AE=CD ( cùng = BD)

EAK=DCK (so le trong)

Do đó, t/g AKE = t/g CKD (g.c.g) (đpcm)

d) Dễ dàng c/m t/g AMF = t/g DMC (c.g.c)

=> AF = DC (2 cạnh tương ứng)

AFM=DCM (2 góc tương ứng)

Mà AFM và DCM là 2 góc ở vị trí so le trong nên AF //BC

Lại có: AE // BC (câu b) suy ra AF trùng với AE hay A,E,F thẳng hàng (3)

Mà AF=DC=BD=AE (4)

Từ (3) và (4) => A là trung điểm của EF (đpcm)

15 tháng 12 2016

C.ơn p nha

15 tháng 1 2018

A B C I D E H

Xét tam giác CIE và tam giác BID có: IE=ID; IC=IB và ^CIE=^BID (Đối đỉnh)

=> Tam giác CIE = Tam giác BID (c.g.c)

^ICE=^IBD (2 góc tương ứng). Mà ^ICE và ^IBD so le trong

=> CE//BD hay BD//CH. Mà BD vuông góc với AB

=> CH vuông góc với AB (Quan hệ //, vg góc) 

=> Tam giác AHC vuông tại H (đpcm).