K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 7 2021

Hàm có 3 cực trị khi \(-2\left(m+1\right)< 0\Leftrightarrow m>-1\)

\(y'=4x^3-4\left(m+1\right)x=0\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y=m\\x=-\sqrt{m+1}\Rightarrow y=-m^2-m-1\\x=\sqrt{m+1}\Rightarrow y=-m^2-m-1\end{matrix}\right.\)

Gọi 3 điểm cực trị là A, B, C với \(A\left(0;m\right)\) và \(B\left(\sqrt{m+1};-m^2-m+1\right)\)

Tam giác ABC cân tại A nên nó đều khi \(B=60^0\)

\(\Rightarrow tanB=tan60^0=\dfrac{y_A-y_B}{x_B}\Leftrightarrow\sqrt{3}=\dfrac{m^2+2m+1}{\sqrt{m+1}}\)

\(\Leftrightarrow\left(m+1\right)^3=3\Rightarrow m=\sqrt[3]{3}-1\)

NV
1 tháng 8 2021

\(y'=4x^3-4mx=0\Rightarrow\left\{{}\begin{matrix}x=0\\x^2=m\end{matrix}\right.\)

Hàm có 3 cực trị khi \(m>0\)

Khi đó gọi 3 điểm cực trị là A; B; C với \(\left\{{}\begin{matrix}A\left(0;m\right)\\B\left(\sqrt{m};-m^2+m\right)\\C\left(-\sqrt{m};-m^2+m\right)\end{matrix}\right.\)

Tam giác ABC luôn cân tại A

Gọi H là trung điểm BC \(\Rightarrow\left\{{}\begin{matrix}AH=\left|y_B-y_A\right|=m^2\\BC=\left|x_B-x_A\right|=2\sqrt{m}\end{matrix}\right.\)

Do tam giác vuông cân

\(\Rightarrow AH=\dfrac{1}{2}BC\Rightarrow m^2=\sqrt{m}\Rightarrow m=1\)

NV
6 tháng 1 2022

\(f'\left(x\right)=4x^3-4mx=4x\left(x^2-m\right)\)

Hàm có 3 cực trị khi \(m>0\Rightarrow\left[{}\begin{matrix}x=0;y=3m^2-m+2\\x=-\sqrt{m};y=2m^2-m+2\\x=\sqrt{m};y=2m^2-m+2\end{matrix}\right.\)

\(S_{ABC}=\dfrac{1}{2}\left|-\sqrt{m}-\sqrt{m}\right|.\left|\left(3m^2-m+2\right)-\left(2m^2-m+2\right)\right|\)

\(=\sqrt{m}.m^2=32\)

\(\Rightarrow\sqrt{m^5}=2^5\Rightarrow m=4\)

6 tháng 4 2016

\(y=-x^4+2\left(m+1\right)x^2+m+1\left(C_m\right)\)

\(y'=-4x^2+4\left(m+1\right)x=-4x\left(x^2-m-1\right)\)

Xét \(y'=0\Leftrightarrow-4x\left(x^2-m-1\right)=0\) \(\Leftrightarrow\begin{cases}x=0\\x^2=m+1\left(1\right)\end{cases}\)

Hàm số có 3 điểm cực trị khi và chỉ khi phương trình \(y'=0\) có 3 nghiệm phân biệt \(\Leftrightarrow\) phương trình (1) có 2 nghiệm phân biệt khác 0 

\(\Leftrightarrow m+1>0\Leftrightarrow m>-1\) (*)

Với điều kiện (*) phương trình y' = 0 có 3 nghiệm phân biệt \(x,x=\pm\sqrt{m+1}\) và có 3 điểm cực trị của đồ thị \(C_m\) là \(A\left(0;m+1\right);B\left(-\sqrt{m+1;}-\left(m+1\right)^2+m+1;\right);C\left(\sqrt{m+1};-\left(m+1\right)^2+m+1\right)\)

3 điểm cực trị tạo thành 1 tam giác đều :

\(\Leftrightarrow AB=AC=CB\Leftrightarrow AB^2=AC^2=CB^2\) 

\(\Leftrightarrow\begin{cases}AB^2=AC^2\\AB^2=BC^2\end{cases}\)\(\Leftrightarrow\begin{cases}m+1+\left(m+1\right)^4=m+1+\left(m+1\right)^4\\m+1+\left(m+1\right)^4=4\left(m+1\right)\end{cases}\)

                              \(\Leftrightarrow m=\sqrt[3]{3}-1\)

 

26 tháng 5 2017

Chọn C

Ta có

 

nên hàm số có 3 điểm cực trị khi m > 1.

Với đk m > 1 đồ thị hàm số có 3 điểm cực trị là:

 

Ta có:

Để 3 điểm cực trị của đồ thị hàm số tạo thành tam giác đều thì:

So sánh với điều kiện ta có: m = 1 + 3 3 2  thỏa mãn.

[Phương pháp trắc nghiệm]

Yêu cầu bài toán

 

 

NV
2 tháng 8 2021

\(y'=4x^3+4\left(m-2\right)x=0\Rightarrow\left[{}\begin{matrix}x=0\\x^2=2-m\end{matrix}\right.\)

Hàm có 3 cực trị khi và chỉ khi \(2-m>0\Leftrightarrow m< 2\)

Khi đó gọi 3 cực trị là A, B, C ta có: \(\left\{{}\begin{matrix}A\left(0;m^2-5m+5\right)\\B\left(\sqrt{2-m};1-m\right)\\C\left(-\sqrt{2-m};1-m\right)\end{matrix}\right.\) 

 Tam giác ABC luôn cân tại A

Gọi H là trung điểm BC \(\Rightarrow H\left(0;1-m\right)\)

\(AH=\left|y_A-y_H\right|=\left|m^2-4m+4\right|=\left(m-2\right)^2\)

\(BC=2\sqrt{2-m}\)

Do ABC đều \(\Rightarrow AH=\dfrac{\sqrt{3}}{2}BC\Leftrightarrow\left(m-2\right)^2=\dfrac{\sqrt{3}}{2}\sqrt{2-m}\)

\(\Leftrightarrow\left(2-m\right)^3=\dfrac{3}{4}\Rightarrow m=2-\sqrt[3]{\dfrac{3}{4}}\)

NV
6 tháng 10 2021

\(y'=4x^3-4mx=4x\left(x^2-m\right)\)

Hàm có cực đại, cực tiểu khi \(m>0\), khi đó ta có tọa độ các cực trị:

\(A\left(0;m^4+2m\right)\) ; \(B\left(-\sqrt{m};m^4-m^2+2m\right)\) ; \(C\left(\sqrt{m};m^4-m^2+2m\right)\)

3 cực trị luôn tạo thành 1 tam giác cân tại A

Gọi H là trung điểm BC \(\Rightarrow H\left(0;m^4-m^2+2m\right)\)

\(\Rightarrow AH=m^2\) ; \(BC=2\sqrt{m}\)

Tam giác ABC đều khi:

\(AH=\dfrac{BC\sqrt{3}}{2}\) \(\Rightarrow m^2=\sqrt{3m}\)

\(\Rightarrow m^4=3m\Rightarrow m=\sqrt[3]{3}\)