K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
14 tháng 7 2021

Ta có: \(\left(x-y\right)^2\ge0\Leftrightarrow x^2+y^2\ge2xy\)

\(\left(y-z\right)\ge0\Leftrightarrow y^2+z^2\ge2yz\)

\(\left(z-x\right)^2\ge0\Leftrightarrow z^2+x^2\ge2zx\)

\(\left(x-1\right)^2\ge0\Leftrightarrow x^2+1\ge2x\)

\(\left(y-1\right)^2\ge0\Leftrightarrow y^2+1\ge2y\)

\(\left(z-1\right)^2\ge0\Leftrightarrow z^2+1\ge2z\)

Cộng lại vế với vế ta được: 

\(3\left(x^2+y^2+z^2\right)+3\ge2xy+2yz+2zx+2x+2y+2z\)

\(\Leftrightarrow Q\ge\frac{2\left(x+y+yz+xy+yz+zx\right)-3}{3}=3\)

Dấu \(=\)khi \(x=y=z=1\).

14 tháng 7 2021

Ta có: \(x+y+z+xy+yz+xz\le x+y+z+\frac{\left(x+y+z\right)^2}{3}\)

=> \(\left(x+y+z\right)^2+3\left(x+y+z\right)\ge3.6=18\)

<=> \(\left(x+y+z\right)^2+3\left(x+y+z\right)-18\ge0\)

<=> \(\left(x+y+z-3\right)\left(x+y+z+6\right)\ge0\)

<=> \(x+y+z\ge3\)(vì x + y + z + 6 > 0 vì x,y,z > 0)

Do đó: \(Q=x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}=\frac{3^2}{3}=3\)

Dấu "=" xảy ra<=> x  = y= z và x + y + z = 3 <=> x = y = z = 1

Vậy MinQ = 3 <=> x = y= z = 1

4 tháng 6 2019

Áp dụng BĐT Cauchy-Schwarz Engel, ta được:

T\(\ge\)\(\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\)+x+y+z+\(\sqrt{xy}\)+\(\sqrt{yz}\)+\(\sqrt{zx}\)-(x+y+z+\(\sqrt{xy}\)+\(\sqrt{yz}\)+\(\sqrt{zx}\))

Áp dụng BĐT AM-GM , ta được:

T\(\ge\)2(x+y+z)-x-y-z-\(\frac{x+y+z}{2}\)=\(\frac{x+y+z}{2}\)\(\ge\)\(\frac{2019}{2}\)

Vậy: GTNN của A=\(\frac{2019}{2}\)khi x=y=z=673

4 tháng 6 2019

\(T>=\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{xz}}\)(bunhiacopxki dạng phân thức)

=>\(T>=\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y}{2}+\frac{y+z}{2}+\frac{x+z}{2}}\)

=>\(T>=\frac{2\left(x+y+z\right)^2}{4\left(x+yz\right)}=\frac{x+y+z}{2}=\frac{2019}{2}\)

xảy ra dấu= khi và chỉ khi \(x=y=z=\frac{2019}{3}\)

31 tháng 3 2016

theo sách nâng cao và phát triển toàn 9 ta có \(A\ge\frac{x+y+z}{2}\ge\frac{\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}{2}\)

3 tháng 3 2017

áp dụng bđt Schwarz thôi mak :

A >/ (x+y+z)/2

phần còn lại là c/m x+y+z >/ căn xy + căn yz + căn zx >/ 1 =>A >/ 1/2

3 tháng 3 2017

thật lòng xin lỗi anh chị , em mới hok lớp 6 hà !!!!!!