K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Phần C đề thiếu

\(D=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\)

\(\Rightarrow3D=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)

\(\Rightarrow3D-D=(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}})-\)\((\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}})\)

\(\Rightarrow2D=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(\Rightarrow6D=3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)

\(\Rightarrow6D-2D=3-\frac{101}{3^{99}}+\frac{100}{3^{100}}\)

\(\Rightarrow4D=3-\frac{203}{3^{100}}\)

\(\Rightarrow D=\frac{3}{4}-\frac{\frac{203}{3^{100}}}{4}< \frac{3}{4}\left(đpcm\right)\)

27 tháng 9 2020

sửa rồi nhá bn

3 tháng 9 2019

lolang

8 tháng 8 2020

Giúp mình nha. Bài cuối cùng của đề toán dài 36 bài của mình đó

8 tháng 8 2020

\(A=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{100.100}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

Mà \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}< 1\)

Nên từ đây => \(A< 1\)     (ĐPCM)

2 tháng 4 2023

1+1=3 :)))

9 tháng 4 2018

\(a)\) Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\) ta có : 

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A< 1-\frac{1}{100}=\frac{99}{100}< 1\)

Vậy \(A< 1\)

Chúc bạn học tốt ~ 

29 tháng 12 2019

Đặt:

\(4C=3-\frac{203}{3^{100}}.\)

\(3-\frac{203}{3^{100}}< 3\)

\(\Rightarrow4C< 3\)

\(\Rightarrow C< \frac{3}{4}\left(đpcm\right).\)

Vậy \(C< \frac{3}{4}.\)

Chúc bạn học tốt!

29 tháng 8 2016

hổng khó, marivan2016(mk bít nick thiệt nhưng hổng nói) làm ơn k giùm mk nha cảm ơn nhìu!!!

23 tháng 8 2016

\(3C=1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+....+\frac{100}{3^{99}}.\)

\(2C=3C-C=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^{99}}-\frac{100}{3^{100}}.\)

\(2C=1+A-\frac{100}{3^{100}}\)

\(A=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}=\frac{1}{2}\left(1-\frac{1}{3^{99}}\right)< \frac{1}{2}\)

=>\(2C=1+A-\frac{100}{3^{100}}< 1+\frac{1}{2}=\frac{3}{2}\)

\(C< \frac{3}{4}.\)