K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔAME và ΔCMB có 

MA=MC(gt)

\(\widehat{AME}=\widehat{CMB}\)(hai góc đối đỉnh)

ME=MB(gt)

Do đó: ΔAME=ΔCMB(c-g-c)

Suy ra: AE=CB(hai cạnh tương ứng)(1)

Xét ΔANF và ΔBNC có 

NA=NB(gt)

\(\widehat{ANF}=\widehat{BNC}\)(hai góc đối đỉnh)

NF=NC(gt)

Do đó: ΔANF=ΔBNC(c-g-c)

Suy ra: AF=BC(Hai cạnh tương ứng)(2)

Từ (1) và (2) suy ra AE=AF(đpcm)

b) Ta có: ΔAME=ΔCMB(cmt)

nên \(\widehat{MAE}=\widehat{MCB}\)(hai góc tương ứng)

mà hai góc này là hai góc ở vị trí so le trong

nên AE//BC(Dấu hiệu nhận biết hai đường thẳng song song)

Ta có: ΔANF=ΔBNC(cmt)

nên \(\widehat{AFN}=\widehat{BCN}\)(hai góc tương ứng)

mà hai góc này là hai góc ở vị trí so le trong

nên AF//BC(Dấu hiệu nhận biết hai đường thẳng song song)

Ta có: AE//BC(cmt)

mà AF//BC(cmt)

và AE,AF có điểm chung là A

nên A,E,F thẳng hàng(đpcm)

23 tháng 12 2016

1. Xét tam giác MAE và tam giác MCB có:

     ME = MB (gt)

     MA = MC (gt)

     Góc M1 = góc M2 (đối đỉnh)

=> Tam giác MAE = Tam giác MCB (c.g.c)

2. Xét tứ giác AEBC có:

     M là trung điểm BE (gt)

     M là trung điểm AC (gt)

=> Tứ giác AEBC là hình bình hành 

=> AE // BC và AE = BC (1)
Xét tứ giác FABC có:

   N là trung điểm BA (gt)

   N là trung điểm FC (gt)

=> Tứ giác FABC là hình bình hành

=> FA // BC và FA = BC (2)

Từ (1), (2) => AE = AF

23 tháng 12 2016


A B C M N E F

Hình xấu quá bạn thông cảm.

a: ΔAHB vuông tại H 

=>AH<AB

ΔAHC vuông tại H

=>AH<AC

=>AH+AH<AB+AC

=>2AH<AB+AC

=>\(AH< \dfrac{1}{2}\left(AB+AC\right)\)

b: Xét ΔABC có

BM,CN là trung tuyến

BM cắt CN tại G

=>G là trọng tâm

=>BG=2GM và CG=2GN

=>BG=GE và CG=GF

=>G là trung điểm của BE và G là trung điểm của CF

Xét tứ giác BFEC có

G là trung điểm chung của BE và CF

=>BFEC là hình bình hành

=>EF=BC

23 tháng 12 2020

a) Xét ΔAME và ΔCMB có 

AM=CM(M là trung điểm của AC)

\(\widehat{AME}=\widehat{CMB}\)(hai góc đối đỉnh)

ME=MB(gt)

Do đó: ΔAME=ΔCMB(c-g-c)

⇒AE=BC(hai cạnh tương ứng)

b) Ta có: ΔAME=ΔCMB(cmt)

nên \(\widehat{EAM}=\widehat{BCM}\)(hai góc tương ứng)

mà \(\widehat{EAM}\) và \(\widehat{BCM}\) là hai góc ở vị trí so le trong

nên AE//BC(Dấu hiệu nhận biết hai đường thẳng song song)

c) Xét ΔANF và ΔBNC có 

AN=BN(N là trung điểm của AB)

\(\widehat{ANF}=\widehat{BNC}\)(hai góc đối đỉnh)

NF=NC(gt)

Do đó: ΔANF=ΔBNC(c-g-c)

⇒AF=BC(hai cạnh tương ứng)

Ta có: ΔANF=ΔBNC(cmt)

nên \(\widehat{AFN}=\widehat{BCN}\)(hai góc tương ứng)

mà \(\widehat{AFN}\) và \(\widehat{BCN}\) là hai góc ở vị trí so le trong

nên AF//BC(Dấu hiệu nhận biết hai đường thẳng song song)

mà AE//BC(cmt)

và AF,AE có điểm chung là A

nên F,A,E thẳng hàng(1)

Ta có: AE=BC(cmt)

mà AF=BC(cmt)

nên AE=AF(2)

Từ (1) và (2) suy ra A là trung điểm của EF(đpcm)