K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2021

1.

\(2cos4x-3=0\)

\(\Leftrightarrow cos4x=\dfrac{3}{2}\)

Mà \(cos4x\in\left[-1;1\right]\)

\(\Rightarrow\) phương trình vô nghiệm.

2.

\(cos5x+2=0\)

\(\Leftrightarrow cos5x=-2\)

Mà \(cos5x\in\left[-1;1\right]\)

\(\Rightarrow\) phương trình vô nghiệm.

12 tháng 7 2021

3.

\(cos2x+0,7=0\)

\(\Leftrightarrow cos2x=-\dfrac{7}{10}\)

\(\Leftrightarrow2x=\pm arccos\left(-\dfrac{7}{10}\right)+k2\pi\)

\(\Leftrightarrow x=\pm\dfrac{arccos\left(-\dfrac{7}{10}\right)}{2}+k\pi\)

4.

\(cos^22x-\dfrac{1}{4}=0\)

\(\Leftrightarrow cos^22x=\dfrac{1}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=-\dfrac{1}{2}\\cos2x=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\pm\dfrac{2\pi}{3}+k2\pi\\2x=\pm\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\pm\dfrac{\pi}{3}+k\pi\\x=\pm\dfrac{\pi}{6}+k\pi\end{matrix}\right.\)

23 tháng 8 2021

2.

\(sin3x+cos2x=1+2sinx.cos2x\)

\(\Leftrightarrow sin3x+cos2x=1+sin3x-sinx\)

\(\Leftrightarrow cos2x+sinx-1=0\)

\(\Leftrightarrow-2sin^2x+sinx=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\sinx=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)

23 tháng 8 2021

1.

\(cos3x-cos4x+cos5x=0\)

\(\Leftrightarrow cos3x+cos5x-cos4x=0\)

\(\Leftrightarrow2cos4x.cosx-cos4x=0\)

\(\Leftrightarrow\left(2cosx-1\right)cos4x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=\dfrac{1}{2}\\cos4x=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\pm\dfrac{\pi}{3}+k2\pi\\4x=\dfrac{\pi}{2}+k\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\pm\dfrac{\pi}{3}+k2\pi\\x=\dfrac{\pi}{8}+\dfrac{k\pi}{4}\end{matrix}\right.\)

28 tháng 9 2021

a, \(cos2x+4cosx+1=0\)

\(\Leftrightarrow2cos^2x+4cosx=0\)

\(\Leftrightarrow2cosx\left(cosx+2\right)=0\)

\(\Leftrightarrow cosx=0\)

\(\Leftrightarrow x=\dfrac{\pi}{2}+k\pi\)

28 tháng 9 2021

b, \(cos^22x=\dfrac{1}{4}\)

\(\Leftrightarrow4cos^22x-1=0\)

\(\Leftrightarrow\left(2cosx-1\right)\left(2cosx+1\right)=0\)

\(\Leftrightarrow cosx=\pm\dfrac{1}{2}\)

\(\Leftrightarrow x=\pm\dfrac{\pi}{3}+k\pi\)

10 tháng 9 2017

Đăng lên chô khác đi :D đây toàn lớp THCS có lẽ ít ai giải :v
vị dụ VMF , HMF, h,...................................><

NV
28 tháng 7 2021

1a.

Đặt \(5x+6=u\)

\(cos2u+4\sqrt{2}sinu-4=0\)

\(\Leftrightarrow1-2sin^2u+4\sqrt{2}sinu-4=0\)

\(\Leftrightarrow2sin^2u-4\sqrt{2}sinu+3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinu=\dfrac{3\sqrt{2}}{2}>1\left(loại\right)\\sinu=\dfrac{\sqrt{2}}{2}\end{matrix}\right.\)

\(\Rightarrow sin\left(5x+6\right)=\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}5x+6=\dfrac{\pi}{4}+k2\pi\\5x+6=\dfrac{3\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{6}{5}+\dfrac{\pi}{20}+\dfrac{k2\pi}{5}\\x=-\dfrac{6}{5}+\dfrac{3\pi}{20}+\dfrac{k2\pi}{5}\end{matrix}\right.\)

NV
28 tháng 7 2021

1b.

Đặt \(2x+1=u\)

\(cos2u+3sinu=2\)

\(\Leftrightarrow1-2sin^2u+3sinu=2\)

\(\Leftrightarrow2sin^2u-3sinu+1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinu=1\\sinu=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(2x+1\right)=1\\sin\left(2x+1\right)=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=\dfrac{\pi}{2}+k2\pi\\2x+1=\dfrac{\pi}{6}+k2\pi\\2x+1=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}+\dfrac{\pi}{4}+k\pi\\x=-\dfrac{1}{2}+\dfrac{\pi}{12}+k\pi\\x=-\dfrac{1}{2}+\dfrac{5\pi}{12}+k\pi\end{matrix}\right.\)

17 tháng 5 2017

Hàm số lượng giác, phương trình lượng giác

Hàm số lượng giác, phương trình lượng giác

Hàm số lượng giác, phương trình lượng giác

Hàm số lượng giác, phương trình lượng giác

a: cos5x=-5

mà -1<=cos5x<=1

nên \(x\in\varnothing\)

b: 2*cosx-1=0

=>2*cosx=1

=>cosx=1/2

=>x=pi/3+k2pi hoặc x=-pi/3+k2pi

c: -5*cos(x+pi/3)=0

=>cos(x+pi/3)=0

=>x+pi/3=pi/2+kpi

=>x=pi/6+kpi

d: cos4x=cos(5/12pi)

=>4x=5/12pi+k2pi hoặc 4x=-5/12pi+k2pi

=>x=5/48pi+kpi/2 hoặc x=-5/48pi+kpi/2

e: cos^2x=1

=>sin^2x=0

=>sin x=0

=>x=kpi

NV
21 tháng 1 2021

Bạn xem lại đề bài

15 tháng 12 2023

1: \(P=sin^22x=1-cos^22x\)

\(=1-\left(cos2x\right)^2\)

\(=1-\left(2cos^2x-1\right)^2\)

\(=1-\left(2\cdot\dfrac{9}{16}-1\right)^2\)

\(=1-\left(\dfrac{9}{8}-1\right)^2=1-\left(\dfrac{1}{8}\right)^2=\dfrac{63}{64}\)

2:

\(cos2x-sin\left(x+\dfrac{\Omega}{3}\right)=0\)

=>\(sin\left(x+\dfrac{\Omega}{3}\right)=cos2x=sin\left(\dfrac{\Omega}{2}-2x\right)\)

=>\(\left[{}\begin{matrix}x+\dfrac{\Omega}{3}=\dfrac{\Omega}{2}-2x+k2\Omega\\x+\dfrac{\Omega}{3}=\Omega-\dfrac{\Omega}{2}+2x+k2\Omega\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}3x=\dfrac{\Omega}{6}+k2\Omega\\-x=\dfrac{1}{6}\Omega+k2\Omega\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\Omega}{18}+\dfrac{k2\Omega}{3}\\x=-\dfrac{1}{6}\Omega-k2\Omega\end{matrix}\right.\)