Chứng minh rằng:
S= 1/2^2 + 1/3^2 + 1/4^2 +.....+ 1/200^2<1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đầu tiên ta chứng minh \(\frac{1}{n.n}< \frac{1}{\left(n-1\right).\left(n+1\right)}\)(n thuộc N*)
Ta có: \(\frac{1}{\left(n-1\right).\left(n+1\right)}=\frac{1}{\left(n-1\right).n+\left(n-1\right)}=\frac{1}{n.n-n+n-1}=\frac{1}{n.n-1}>\frac{1}{n.n}\)
\(S=\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{4^3}+...+\frac{1}{2009^3}< \frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{2008.2009.2010}\)
\(S< \frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{2008.2009.2010}\right)\)
\(S< \frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{2008.2009}-\frac{1}{2009.2010}\right)\)
\(S< \frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2009.2010}\right)\)
\(S< \frac{1}{2}.\frac{1}{2}=\frac{1}{4}\)
=> S < 1/4 (đpcm)
Ủng hộ mk nha ^_-
cho mình hỏi tại sao:
1/2 . (1/1.2−1/2009.2010) = 1/2 . 1/2
\(S=1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)+\left(\frac{1}{8}+...+\frac{1}{15}\right)+...+\left(\frac{1}{2^{99}}+...+\frac{1}{2^{100}-1}\right)\)
\(S=1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{2^2}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)+\left(\frac{1}{2^3}+...+\frac{1}{15}\right)+...+\left(\frac{1}{2^{99}}+...+\frac{1}{2^{100}-1}\right)\)
ta chia S thành 10 nhóm: 1 và 99 nhóm như trên
nhận xét:
\(\frac{1}{2}+\frac{1}{3}<\frac{1}{2}.2=1\)
\(\frac{1}{2^2}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}<\frac{1}{2^2}.4=1\)
\(\frac{1}{8}+...+\frac{1}{15}<\frac{1}{8}.8=1\)
..........
\(\frac{1}{2^{99}}+...+\frac{1}{2^{100}-1}<\frac{1}{2^{99}}.2^{99}=1\)
=> S < 1+ 1 + 1+...+ 1 = 100 => điều phải chứng minh
Nhân S với 4 ta được :
4S = 4/(5x5) + 4/(9x9) + … + 1/(409x409)
Ta thấy:
4/(5x5) < 4/(3x7) = 1/3 – 1/7
4/(9x9) < 4/(7x11) = 1/7 – 1/11
…………
4/(409x409) < 4/(407x411) = 1/407 – 1/411
Mà :
4/(3x7) + 4/(7x11) + …. + 4/(407x411) = 1/3 – 1/411 = 136/411
4S < 136/411
S < 34/411 < 34/408 = 1/12
Hay S < 1/12
cho S=1/5^2+1/9^2+.........+1/409^2 chứng minh rằng:S<1/12
Câu hỏi tương tự Đọc thêmS=(1+2)+(2^2+2^3)+(2^4+2^5)+....+(2^99+2^100)
S=3+3.2^2+3.2^4+.....+3.2^99
S=3.(2^2+2^4+.....+2^99)
Vì 3 chia hết 3=>3.(2^2+2^4+....+2^99)
=>S chia hết 3
2S=2+2^2+2^3+2^4+.....+2^101
2S-S=(2+2^2+2^3+2^4+....+2^101)-(1+2+2^2+2^3+2^4+....+2^100)
S=2^101-1
S+1=2^101-1+1=2^101
=>x=101
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)( đpcm )
Ta có:
S<\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{199.200}\)
S<\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{199}-\frac{1}{200}\)
S<1-\(\frac{1}{200}=\frac{199}{200}<1\)
S<1