K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)

\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)

\(\Leftrightarrow3\sqrt{x+5}=6\)

\(\Leftrightarrow\sqrt{x+5}=2\)

\(\Leftrightarrow x+5=4\)

hay x=-1

10 tháng 7 2021

\(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\cdot\sqrt{9x+45}=6\left(x\ge-5\right)\)

\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+\dfrac{4}{3}\cdot3\cdot\sqrt{x+5}=6\)

\(\Leftrightarrow3\cdot\sqrt{x+5}=6\)

\(\Leftrightarrow\sqrt{x+5}=2\)

\(\Leftrightarrow x+5=2^2=4\)

\(\Leftrightarrow x=-1\left(N\right)\)

24 tháng 11 2021

\(a,\Leftrightarrow x-1=4\Leftrightarrow x=5\\ b,\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{4}\\3x+1=4x-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{4}\\x=4\left(tm\right)\end{matrix}\right.\Leftrightarrow x=4\\ c,ĐK:x\ge-5\\ PT\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\\ \Leftrightarrow3\sqrt{x+5}=6\\ \Leftrightarrow\sqrt{x+5}=3\\ \Leftrightarrow x+5=9\\ \Leftrightarrow x=4\left(tm\right)\)

\(d,\Leftrightarrow\sqrt{\left(x-2\right)^2}=\sqrt{\left(\sqrt{5}+1\right)^2}\\ \Leftrightarrow\left|x-2\right|=\sqrt{5}+1\\ \Leftrightarrow\left[{}\begin{matrix}x-2=\sqrt{5}+1\\2-x=\sqrt{5}+1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{5}+3\\x=1-\sqrt{5}\end{matrix}\right.\)

18 tháng 9 2021

Mn giúp e với ak

18 tháng 9 2021

a) \(\sqrt{x^2-6x+9}\)

\(=\sqrt{\left(x^2-2.x.3+3^2\right)}\)

\(=\sqrt{\left(x-3\right)^2}\) ≥0,∀x

⇒x∈\(R\)

b) \(\sqrt{x^2-2x+1}\)

\(=\sqrt{\left(x^2-2.x.1+1^2\right)}\)

\(=\sqrt{\left(x-1\right)^2}\) ≥0,∀x

⇒x∈\(R\)

18 tháng 10 2021

\(d,ĐK:x\ge0\\ PT\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=2\\\sqrt{x}=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\left(tm\right)\\x=9\left(tm\right)\end{matrix}\right.\\ e,ĐK:x\ge1\\ PT\Leftrightarrow\sqrt{x-1}+\dfrac{3}{2}\cdot2\sqrt{x-1}-\dfrac{2}{5}\cdot5\sqrt{x-1}=4\\ \Leftrightarrow2\sqrt{x-1}=4\Leftrightarrow\sqrt{x-1}=2\\ \Leftrightarrow x-1=4\Leftrightarrow x=5\left(tm\right)\\ f,ĐK:x\ge5\\ PT\Leftrightarrow\sqrt{x-5}+2\sqrt{x-5}-\dfrac{1}{3}\cdot3\sqrt{x-5}=6\\ \Leftrightarrow2\sqrt{x-5}=6\Leftrightarrow\sqrt{x-5}=3\\ \Leftrightarrow x-5=9\Leftrightarrow x=14\left(tm\right)\)

15 tháng 10 2023

a: ĐKXĐ: x-5>=0

=>x>=5

\(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\cdot\sqrt{9x-45}=4\)

=>\(2\sqrt{x-5}+\sqrt{x-5}-\dfrac{1}{3}\cdot3\sqrt{x-5}=4\)

=>\(2\sqrt{x-5}=4\)

=>x-5=4

=>x=9(nhận)

b: ĐKXĐ: x-1>=0

=>x>=1

\(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}=4\)

=>\(\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}=4\)

=>\(-2\sqrt{x-1}=4\)

=>\(\sqrt{x-1}=-2\)(vô lý)

Vậy: Phương trình vô nghiệm

c: ĐKXĐ: x-2>=0

=>x>=2

\(\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\cdot\sqrt{9x-18}+6\cdot\sqrt{\dfrac{x-2}{81}}=-4\)

=>\(\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\cdot3\sqrt{x-2}+6\cdot\dfrac{\sqrt{x-2}}{9}=-4\)

=>\(\sqrt{x-2}\left(\dfrac{1}{3}-2+\dfrac{2}{3}\right)=-4\)

=>\(-\sqrt{x-2}=-4\)

=>x-2=16

=>x=18(nhận)

d: ĐKXĐ: x+3>=0

=>x>=-3

\(\sqrt{9x+27}+4\sqrt{x+3}-\dfrac{3}{4}\cdot\sqrt{16x+48}=0\)

=>\(3\sqrt{x+3}+4\sqrt{x+3}-\dfrac{3}{4}\cdot4\sqrt{x+3}=0\)

=>\(4\sqrt{x+3}=0\)

=>x+3=0

=>x=-3(nhận)

15 tháng 10 2023

a) \(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\)

\(2\sqrt{x-5}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9\left(x-5\right)}=4\)

\(2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

\(2\sqrt{x-5}=4\)

\(\sqrt{x-5}=2\)

\(\left|x-5\right|=4\)

=> \(x-5=\pm4\)

\(x=\pm4+5\)

\(x=9;x=1\)

Vậy x=9; x=1

18 tháng 8 2023

\(a,3\sqrt{2x}+\sqrt{8x}-\sqrt{18x}=16\left(dk:x\ge0\right)\\ \Leftrightarrow3\sqrt{2x}+2\sqrt{2x}-3\sqrt{2x}=16\\ \Leftrightarrow\sqrt{2x}\left(3+2-3\right)=16\\ \Leftrightarrow2\sqrt{2x}=16\\ \Leftrightarrow\sqrt{2x}=8\\ \Leftrightarrow\left|2x\right|=64\\ \Leftrightarrow2x=64\\ \Leftrightarrow x=32\left(tm\right)\)

Vậy \(S=\left\{32\right\}\)

\(b,\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\left(dk:x\ge-5\right)\)

\(\Leftrightarrow\sqrt{4\left(x+5\right)}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9\left(x+5\right)}=6\\ \Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\\ \Leftrightarrow\sqrt{x+5}\left(2-3+4\right)=6\\ \Leftrightarrow3\sqrt{x+5}=6\\ \Leftrightarrow\sqrt{x+5}=2\\ \Leftrightarrow\left|x+5\right|=4\\ \Leftrightarrow x+5=4\\ \Leftrightarrow x=-1\left(tm\right)\)

Vậy \(S=\left\{-1\right\}\)

a) Ta có: \(\sqrt{4-5x}=12\)

\(\Leftrightarrow4-5x=144\)

\(\Leftrightarrow5x=-140\)

hay x=-28

b) Ta có: \(\sqrt{10+\sqrt{3x}}=2+\sqrt{6}\)

\(\Leftrightarrow\sqrt{3x}+10=10+4\sqrt{6}\)

\(\Leftrightarrow\sqrt{3x}=4\sqrt{6}\)

\(\Leftrightarrow3x=96\)

hay x=32

c) Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)

\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+\dfrac{4}{3}\cdot3\sqrt{x+5}=6\)

\(\Leftrightarrow x+5=4\)

hay x=-1

22 tháng 7 2023

\(a) \sqrt{4x^2− 9} = 2\sqrt{x + 3}\)

\(ĐK:x\ge\dfrac{3}{2}\)

\(pt\Leftrightarrow4x^2-9=4\left(x+3\right)\)

\(\Leftrightarrow4x^2-9=4x+12\)

\(\Leftrightarrow4x^2-4x-21=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1-\sqrt{22}}{2}\left(l\right)\\x=\dfrac{1+\sqrt{22}}{2}\left(tm\right)\end{matrix}\right.\)

\(b)\sqrt{4x-20}+3.\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)

\(ĐK:x\ge5\)

\(pt\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

\(\Leftrightarrow2\sqrt{x-5}=4\Leftrightarrow\sqrt{x-5}=2\)

\(\Leftrightarrow x-5=4\Leftrightarrow x=9\left(tm\right)\)

22 tháng 7 2023

\(c)\dfrac{2}{3}\sqrt{9x-9}-\dfrac{1}{4}\sqrt{16x-16}+27.\sqrt{\dfrac{x-1}{81}}=4\)

ĐK:x>=1

\(pt\Leftrightarrow2\sqrt{x-1}-\sqrt{x-1}+3\sqrt{x-1}=4\)

\(\Leftrightarrow4\sqrt{x-1}=4\Leftrightarrow\sqrt{x-1}=1\)

\(\Leftrightarrow x-1=1\Leftrightarrow x=2\left(tm\right)\)

\(d)5\sqrt{\dfrac{9x-27}{25}}-7\sqrt{\dfrac{4x-12}{9}}-7\sqrt{x^2-9}+18\sqrt{\dfrac{9x^2-81}{81}}=0\)

\(ĐK:x\ge3\)

\(pt\Leftrightarrow3\sqrt{x-3}-\dfrac{14}{3}\sqrt{x-3}-7\sqrt{x^2-9}+6\sqrt{x^2-9}=0\)

\(\Leftrightarrow-\dfrac{5}{3}\sqrt{x-3}-\sqrt{x^2-9}=0\Leftrightarrow\dfrac{5}{3}\sqrt{x-3}+\sqrt{x^2-9}=0\)

\(\Leftrightarrow(\dfrac{5}{3}+\sqrt{x+3})\sqrt{x-3}=0\)

\(\Leftrightarrow\sqrt{x-3}=0\)    (vì \(\dfrac{5}{3}+\sqrt{x+3}>0\))

\(\Leftrightarrow x-3=0\Leftrightarrow x=3\left(nhận\right)\)

 

a: ĐKXĐ: x>=3

Sửa đề: \(\sqrt{4x-12}-\sqrt{9x-27}+\sqrt{\dfrac{25x-75}{4}}-3=0\)

=>\(2\sqrt{x-3}-3\sqrt{x-3}+\dfrac{5}{2}\sqrt{x-3}-3=0\)

=>\(\dfrac{3}{2}\sqrt{x-3}=3\)

=>\(\sqrt{x-3}=2\)

=>x-3=4

=>x=7(nhận)

b: ĐKXĐ: x>=0

\(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< =-\dfrac{3}{4}\)

=>\(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}+\dfrac{3}{4}< =0\)

=>\(\dfrac{4\sqrt{x}-8+3\sqrt{x}+3}{4\left(\sqrt{x}+1\right)}< =0\)

=>\(7\sqrt{x}-5< =0\)

=>\(\sqrt{x}< =\dfrac{5}{7}\)

=>0<=x<=25/49

c: ĐKXĐ: x>=5

\(\sqrt{9x-45}-14\sqrt{\dfrac{x-5}{49}}+\dfrac{1}{4}\sqrt{4x-20}=3\)

=>\(3\sqrt{x-5}-14\cdot\dfrac{\sqrt{x-5}}{7}+\dfrac{1}{4}\cdot2\cdot\sqrt{x-5}=3\)

=>\(\dfrac{3}{2}\sqrt{x-5}=3\)

=>\(\sqrt{x-5}=2\)

=>x-5=4

=>x=9(nhận)

9 tháng 10 2017

*****************************************************

ĐK \(x\ge-5\)

Ta có: \(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+45}=6\)

\(\Leftrightarrow\sqrt{x+5}\left(\sqrt{4}-3+\dfrac{4}{3}\sqrt{9}\right)=6\)

\(\Leftrightarrow3\sqrt{x+5}=6\)

\(\Rightarrow x=\left(\dfrac{6}{3}\right)^2-5=-1\)(TMĐK)

Vậy x=-1

9 tháng 10 2017

\(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+45}=6\)

\(\Leftrightarrow\sqrt{2^2\left(x+5\right)}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45=6}\)\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)\(\Leftrightarrow3\sqrt{x+5}=6\)

\(\Leftrightarrow\sqrt{x+5}=2\)

\(\Leftrightarrow x+5=4\)

\(\Leftrightarrow x=-1\)

vậy có tập nghiệm S là -1