K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2019

                                  Giải

Ta có: \(a^b=b^c=c^a\)

\(\Leftrightarrow a=b=c\)

\(\Leftrightarrow M=1^{2016}-1^{2017}\)

\(\Leftrightarrow M=1-1\)

\(\Leftrightarrow M=0\)

15 tháng 3 2022

gớmmmmmmmmmmmmm

15 tháng 3 2022

khi chs flo mà ko có ny

thì chắc như bn này

16 tháng 11 2019

DDawtj \(\frac{a}{1997}=\frac{b}{1998}=\frac{c}{1999}=k\)

\(\Rightarrow a=1997k;b=1998k;c=1999k\)

                                               \(16\left(a-b\right)\left(b-c\right)-4\left(c-a\right)^2\)

         \(=16\left(1997k-1998k\right)\left(1998k-1999k\right)-4\left(1999k-1997k\right)\)

         \(=16.\left(-k\right).\left(-k\right)-4.\left(2k\right)^2\)

         \(=16k^2-4.4k^2\)

         \(=16k^2-16k^2\)

           \(=0\)

Ta có \(a^b=b^c=c^a\left(1\right)\)

Giả sử \(a>b\left(2\right)\)

Thì từ \(\left(1\right)\left(2\right)\Rightarrow b< c;c>a;a< b\)(mâu thuẫn)

Chứng minh tương tự ta được điều \(a< b\)là sai do đó \(a=b\)

Do đó \(a=b=c\)

Tự tính tiếp...

Giải thích phần suy ra từ (1)(2)

Như bạn biết nếu hai lũy thừa bằng nhau mà lũy thừa nào có cơ số cao hơn thì lũy thừa ấy có số mũ thấp hơn lũy thừa còn lại 

VD:2^4=4^2.4^2 có cơ số là 4>2 nên số mũ của nó bé hơn 

NV
5 tháng 1

\(P=log_{\dfrac{\sqrt{a}}{b}}a+log_{\dfrac{\sqrt{a}}{b}}\sqrt[3]{b}=log_{\dfrac{\sqrt{a}}{b}}a+\dfrac{1}{3}log_{\dfrac{\sqrt{a}}{b}}b\)

\(=\dfrac{1}{log_a\dfrac{\sqrt{a}}{b}}+\dfrac{1}{3.log_b\dfrac{\sqrt{a}}{b}}=\dfrac{1}{log_a\sqrt{a}-log_ab}+\dfrac{1}{3\left(log_b\sqrt{a}-log_bb\right)}\)

\(=\dfrac{1}{\dfrac{1}{2}-2}+\dfrac{1}{3\left(\dfrac{1}{4}-1\right)}=-\dfrac{10}{9}\)

Nguyễn Châu Tuấn Kiệt ông có thể giúp tui bài này đc ko

19 tháng 3 2019

bài này tôi đăng lên rroif mà chẳng ai bít mà trả lời

1. Cho số nguyên dương x, tìm giá trị nhỏ nhất của biểu thức:\(P=\dfrac{\left(x+1\right)^6}{\left(x^3+7\right)\left(x^3+3x^2+4\right)}\). 2. Cho \(a,b\ge0\) thỏa mãn \(a-\sqrt{a}=\sqrt{b}-b\), tìm giá trị nhỏ nhất của biểu thức:\(M=\left(a-b\right)\left(a+b-1\right)\). 3. Cho \(\Delta OEF\) vuông tại O có \(OE=a\), \(OF=b\), \(EF=c\) và \(\widehat{OEF}=\alpha\), \(\widehat{OFE}=\beta\).1)i, Chứng minh rằng không có giá trị nào của a,b,c để biểu...
Đọc tiếp

1. Cho số nguyên dương x, tìm giá trị nhỏ nhất của biểu thức:

\(P=\dfrac{\left(x+1\right)^6}{\left(x^3+7\right)\left(x^3+3x^2+4\right)}\).

 

2. Cho \(a,b\ge0\) thỏa mãn \(a-\sqrt{a}=\sqrt{b}-b\), tìm giá trị nhỏ nhất của biểu thức:

\(M=\left(a-b\right)\left(a+b-1\right)\).

 

3. Cho \(\Delta OEF\) vuông tại O có \(OE=a\)\(OF=b\)\(EF=c\) và \(\widehat{OEF}=\alpha\)\(\widehat{OFE}=\beta\).

1)

i, Chứng minh rằng không có giá trị nào của a,b,c để biểu thức \(A=\dfrac{a+b}{c}+\dfrac{c}{a+b}\) nhận giá trị nguyên.

ii, Giả sử \(c\sqrt{ab}=\sqrt{2}\) , tìm giá trị nhỏ nhất của biểu thức \(B=\left(a+b\right)^2\).

2)

i, Tìm giá trị nhỏ nhất của biểu thức \(C=\dfrac{1}{\sin^2\alpha}+\dfrac{1}{\sin^2\beta}-2\left(\sin^2\alpha+\sin^2\beta\right)+\dfrac{\sin\alpha}{\tan\alpha}-\dfrac{\tan\alpha+\cos\beta}{\cot\beta}\) .

ii, Tìm điều kiện của \(\Delta OEF\) khi \(2\cos^2\beta-\cot^2\alpha+\dfrac{1}{\sin^2\alpha}=2\).

0