K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2022

gớmmmmmmmmmmmmm

15 tháng 3 2022

khi chs flo mà ko có ny

thì chắc như bn này

1. Cho số nguyên dương x, tìm giá trị nhỏ nhất của biểu thức:\(P=\dfrac{\left(x+1\right)^6}{\left(x^3+7\right)\left(x^3+3x^2+4\right)}\). 2. Cho \(a,b\ge0\) thỏa mãn \(a-\sqrt{a}=\sqrt{b}-b\), tìm giá trị nhỏ nhất của biểu thức:\(M=\left(a-b\right)\left(a+b-1\right)\). 3. Cho \(\Delta OEF\) vuông tại O có \(OE=a\), \(OF=b\), \(EF=c\) và \(\widehat{OEF}=\alpha\), \(\widehat{OFE}=\beta\).1)i, Chứng minh rằng không có giá trị nào của a,b,c để biểu...
Đọc tiếp

1. Cho số nguyên dương x, tìm giá trị nhỏ nhất của biểu thức:

\(P=\dfrac{\left(x+1\right)^6}{\left(x^3+7\right)\left(x^3+3x^2+4\right)}\).

 

2. Cho \(a,b\ge0\) thỏa mãn \(a-\sqrt{a}=\sqrt{b}-b\), tìm giá trị nhỏ nhất của biểu thức:

\(M=\left(a-b\right)\left(a+b-1\right)\).

 

3. Cho \(\Delta OEF\) vuông tại O có \(OE=a\)\(OF=b\)\(EF=c\) và \(\widehat{OEF}=\alpha\)\(\widehat{OFE}=\beta\).

1)

i, Chứng minh rằng không có giá trị nào của a,b,c để biểu thức \(A=\dfrac{a+b}{c}+\dfrac{c}{a+b}\) nhận giá trị nguyên.

ii, Giả sử \(c\sqrt{ab}=\sqrt{2}\) , tìm giá trị nhỏ nhất của biểu thức \(B=\left(a+b\right)^2\).

2)

i, Tìm giá trị nhỏ nhất của biểu thức \(C=\dfrac{1}{\sin^2\alpha}+\dfrac{1}{\sin^2\beta}-2\left(\sin^2\alpha+\sin^2\beta\right)+\dfrac{\sin\alpha}{\tan\alpha}-\dfrac{\tan\alpha+\cos\beta}{\cot\beta}\) .

ii, Tìm điều kiện của \(\Delta OEF\) khi \(2\cos^2\beta-\cot^2\alpha+\dfrac{1}{\sin^2\alpha}=2\).

0
11 tháng 11 2018

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{abc}\Rightarrow\frac{ab+bc+ca}{abc}=\frac{1}{abc}\Rightarrow ab+bc+ca=1\)

Khi đó: \(\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)=\left[ab+bc+ca+a^2\right]\left[ab+bc+ca+b^2\right]\left[ab+bc+ca+c^2\right]\)

\(=\left[a\left(a+b\right)+c\left(a+b\right)\right]\left[b\left(a+b\right)+c\left(a+b\right)\right]\left[b\left(a+c\right)+c\left(a+c\right)\right]\)

\(=\left(a+b\right)^2\left(a+c\right)^2\left(b+c\right)^2\)là số chính phương.

4 tháng 11 2016

gia tri a=2 b=o 

5 tháng 11 2016

Rút gọn Q = a + b+ a+ b-6a/b - 6b/a + 9/a2 + 9/b                                                                                                                            = a2 - 6a/b + 9/b2 + b- 6b/a + 9/a+ a+ b 

                = ( a - 3/b )2 + (b - 3/a )2 + a+ b                                                                                                                                            = (a - 3/b )+ 2(ab - 3) + b2 + (b - 3/a)- 2(ab - 3) + a2                                                                                                                = (a - 3/b ) ^2 +2(a - 3/b)b + b^2 + (b - 3/a)^2 -2(b-3/a)a +a^2                                                                                                       =  (a -3/b +b )^2 + (b-3/a-a)^2                                                                                                                                                   = (2-3/b)^2 + (b-3/a-a)^2                                                                                                                                                           mik chỉ bik làm tới đây thôi bạn thông cảm mak hình như giá trị nhỏ nhất của Q là 25 tại a=3/2,b=1/2 hoặc a=3/2,b=1/2 

    

23 tháng 9 2021

Ta có: \(a+b+c+\sqrt{abc}=4\)

\(\Rightarrow4a+4b+4c+4\sqrt{abc}=16\)

\(\Rightarrow4a+4\sqrt{abc}=16-4b-4c\)

\(\sqrt{a\left(4-b\right)\left(4-c\right)}=\sqrt{a\left(16-4b-4c+bc\right)}=\sqrt{a\left(4a+4\sqrt{abc}+bc\right)}\)

\(=\sqrt{4a^2+4a\sqrt{abc}+abc}=\sqrt{\left(2a+\sqrt{abc}\right)^2}=\left|2a+\sqrt{abc}\right|=2a+\sqrt{abc}\)

Tương tự: 

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{b\left(4-a\right)\left(4-c\right)}=2b+\sqrt{abc}\\\sqrt{c\left(4-a\right)\left(4-b\right)}=2c+\sqrt{abc}\end{matrix}\right.\)

\(\Rightarrow A=\sqrt{a\left(4-b\right)\left(4-c\right)}+\sqrt{b\left(4-c\right)\left(4-a\right)}+\sqrt{c\left(4-a\right)\left(4-b\right)}-\sqrt{abc}=2a+2b+2c+3\sqrt{abc}-\sqrt{abc}=2\left(a+b+c+\sqrt{abc}\right)=8\)

23 tháng 9 2021

Ta có \(\sqrt{a\left(4-b\right)\left(4-c\right)}=\sqrt{a\left(a+c+\sqrt{abc}\right)\left(4-c\right)}\)

\(=\sqrt{\left(a^2+ac+a\sqrt{abc}\right)\left(4-c\right)}\\ =\sqrt{4a^2+ac\left(4-\sqrt{abc}-a-c\right)+4a\sqrt{abc}}\\ =\sqrt{4a^2+4a\sqrt{abc}+abc}=\sqrt{\left(2a+\sqrt{abc}\right)^2}\\ =2a+\sqrt{abc}\left(a,b,c>0\right)\)

Cmtt \(\sqrt{b\left(4-c\right)\left(4-a\right)}=2b+\sqrt{abc};\sqrt{c\left(4-b\right)\left(4-a\right)}=2c+\sqrt{abc}\)

\(\Rightarrow A=2\left(a+b+c\right)+3\sqrt{abc}-\sqrt{abc}=2\left(a+b+c\right)+2\sqrt{abc}\\ A=2\left(a+b+c+\sqrt{abc}\right)=2\cdot4=8\)

NV
27 tháng 12 2020

ĐKXĐ: \(abc\ne0\)

\(a^3+b^3+3ab\left(a+b\right)+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ac-bc\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)

TH1: \(a+b+c=0\)

\(P=\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\dfrac{\left(-c\right)\left(-a\right)\left(-b\right)}{abc}=-1\)

TH2: \(a=b=c\Rightarrow P=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)

26 tháng 6 2020

\(A=\frac{1}{a^2\left(b+c\right)}+\frac{1}{b^2\left(c+a\right)}+\frac{1}{c^2\left(a+b\right)}\)

\(=\frac{abc}{a^2\left(b+c\right)}+\frac{abc}{b^2\left(c+a\right)}+\frac{abc}{c^2\left(a+b\right)}\)

\(=\frac{bc}{ab+ac}+\frac{ac}{bc+ba}+\frac{ab}{ac+bc}\)

Đặt: \(ab=x;bc=y;ac=z\)=> xyz = 1; x,y,z>0

\(A=\frac{y}{x+z}+\frac{z}{y+x}+\frac{x}{z+y}=\frac{y^2}{xy+yz}+\frac{z^2}{yz+xz}+\frac{x^2}{zx+xy}\)

\(\ge\frac{\left(x+y+z\right)^2}{2\left(xy+xz+xz\right)}\ge\frac{3\left(xy+yz+zx\right)}{2\left(xy+yz+zx\right)}=\frac{3}{2}\)

Dấu "=" xảy ra <=> x = y = z= 1 => a = b = c = 1

Vậy gtnn của A = 3/2 tại  a = b = c = 1