1) Cho A = 1+2+22+23+ 24+...+2200 . Hãy viết A+1 dưới dạng một lũy thừa.
2) Cho B= 3+32+33+...+32005 . Chứng minh rằng 2B+3 là lũy thừa của 3.
3) viết các tống sau tành một tích: 2+22; 2+22+ 23; 2+22+23+24
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em kiểm tra lại đề bài nhé.
c Câu hỏi của luongngocha - Toán lớp 6 - Học toán với OnlineMath
b. Câu hỏi của son goku - Toán lớp 6 - Học toán với OnlineMath
a. Câu hỏi của Trần Thị Thanh Thảo - Toán lớp 6 - Học toán với OnlineMath
Câu 3:
\(A=3+3^2+...+3^{100}\)
\(3A=3^2+3^3+...+3^{101}\)
\(3A-A=3^2+3^3+...+3^{101}-\left(3+3^2+...+3^{100}\right)\)
\(2A=3^{101}-3\)
Mà: \(2A+3=3^N\)
\(\Rightarrow3^{101}-3+3=3^N\)
\(\Rightarrow3^{101}=3^N\)
\(\Rightarrow N=101\)
Vậy: ...
Câu 1:
\(A=4+2^2+...+2^{20}\)
Đặt \(B=2^2+2^3+...+2^{20}\)
=>\(2B=2^3+2^4+...+2^{21}\)
=>\(2B-B=2^3+2^4+...+2^{21}-2^2-2^3-...-2^{20}\)
=>\(B=2^{21}-4\)
=>\(A=B+4=2^{21}-4+4=2^{21}\) là lũy thừa của 2
Câu 6:
Đặt A=1+2+3+...+n
Số số hạng là \(\dfrac{n-1}{1}+1=n-1+1=n\left(số\right)\)
=>\(A=\dfrac{n\left(n+1\right)}{2}\)
=>\(A⋮n+1\)
Câu 5:
\(A=5+5^2+...+5^8\)
\(=\left(5+5^2\right)+\left(5^3+5^4\right)+\left(5^5+5^6\right)+\left(5^7+5^8\right)\)
\(=\left(5+5^2\right)+5^2\left(5+5^2\right)+5^4\left(5+5^2\right)+5^6\left(5+5^2\right)\)
\(=30\left(1+5^2+5^4+5^6\right)⋮30\)
1) A = 1+2+2\(^2\) + ... + \(2^{200}\)
2A = 2 + 2\(^2\) + 2\(^3\) + ... + 2\(^{201}\)
2A - A = 2 + 2\(^2\) +2\(^3\) + ... + \(2^{201}\) - 1 - 2 - ... - 2\(^{200}\)
A = 2\(^{201}\) - 1
A+1 = 2\(^{201}\)
Vậy a + 1 = 2\(^{201}\)
2) C = 3 + 3\(^2\) + 3\(^3\) + ... + 3\(^{2005}\)
3C = 3\(^2\) + 3\(^3\) + 3\(^4\) + ... + 3\(^{2006}\)
3C - C = \(3^2\) + 3\(^3\) + 3\(^4\) + ... + 3\(^{2006}\) - 3 - 3\(^2\) - 3\(^3\) - ... - 3\(^{2005}\)
2C = 3\(^{2006}\) - 3
2C+3 = 3\(^{2006}\)
Vậy 2C + 3 là luỹ thừa của 3 ( Đpcm )
1.
A = 1 + 2 + 22 + 23 + ... + 2200
2A = 2 + 22 + 23 + 24 + ... + 2201
2A - A = (2 + 22 + 23 + 24 + ... + 2201) - (1 + 2 + 22 + 23 + ... + 2200)
A = 2201 - 1
=> A + 1 = 2201 - 1 + 1
=> A + 1 = 2201
2.
B = 3 + 32 + 33 + ... + 32005
3B = 32 + 33 + 34 + ... + 32006
3B - B = (32 + 33 + 34 + ... + 32006) - (3 + 32 + 33 + ... + 32005)
2B = 32006 - 3
=> 2B + 3 = 32006 - 3 + 3
=> 2B + 3 = 32006
Ta có: A = 1 + 2 + 22 + 23 + ....... + 2200
=> 2A = 2 + 22 + 23 + ....... + 2201
=> 2A - A = ( 2 + 22 + 23 + ....... + 2201 ) - ( 1 + 2 + 22 + 23 + ....... + 2200 )
=> A = 2201 - 1
=> A + 1 = 2201
A = 1 + 2 + 2 ^ 2 + 2 ^ 3 + ... + 2 ^ 200
2A = 2 + 2 ^ 2 + 2 ^ 3 + 2 ^ 4 + ... + 2 ^ 201
2A - A = ( 2 + 2 ^ 2 + 2 ^ 3 + 2 ^ 4 + ... + 2 ^ 201 )
- ( 1 + 2 + 2 ^ 2 + 2 ^ 3 + ... + 2 ^ 200 )
A = 2 ^ 201 - 1
=> A + 1 = 2 ^ 201
B = 3 + 3 ^ 2 + 3 ^ 3 + ... + 3 ^ 2005
3B = 3 ^ 2 + 3 ^ 3 + 3 ^ 4 + ... + 3 ^ 2006
3B - B = ( 3 ^ 2 + 3 ^ 3 + 3 ^ 4 + ... + 3 ^ 2006 )
- ( 3 + 3 ^ 2 + 3 ^ 3 + ... + 3 ^ 2005 )
2B = 3 ^ 2006 - 3
=> 2B = 3 ^ 2006
Vậy 2B + 3 là lũy thừa của 3
a) A = 22007-1 => A + 1 = 22007
b) Do 2B = 3B - B = 32006- 3 => 2B + 3 = 32006
c) C = 4 + 22 + 23+...+22005 = 22 + 23 + ...+ 22005 + 4
2C - C = 22006 - 22 + 4 =22006 - 22 + 22 = 22006
a) Ta có:
A = 1 + 2 + 22 + 23 + ... + 2200
=> 2A = 2(1 + 2 + 22 + 23 + ... + 2200)
=> 2A = 2 + 22 + 23 + 24 + ... + 2201
=> 2A - A = (2 + 22 + 23 + 24 + ... + 2201) - (1 + 2 + 22 + 23 + ... + 2200)
=> A = 2201 - 1
=> A + 1 = 2201 - 1 + 1
=> A + 1 = 2201
Vậy A + 1 = 2201
b) Ta có:
B = 3 + 32 + 33 + ... + 32005
=> 3B = 3(3 + 32 + 33 + ... + 32005)
=> 3B = 32 + 33 + 34 + ... + 32006
=> 3B - B = (32 + 33 + 34 + ... + 32006) - (3 + 32 + 33 + .. + 32005)
=> 2B = 32006 - 3
c) Ta có:
C = 4 + 22 + 23 + ... + 22005
Đặt M = 22 + 23 + ... + 22005, ta có:
2M = 2(22 + 23 + ... + 22005)
=> 2M = 23 + 24 + ... + 22006
=> 2M - M = (23 + 24 + ... + 22006) - (22 + 23 + ... + 22005)
=> M = 22006 - 22
=> M = 22006 - 4
Thay M = 22006 - 4 vào C, ta có:
C = 4 + (22006 - 4) = 22006
=> 2C = 2 . 22006 = 22007
Vậy 2C là lũy thừa của 2.
3) 2 + 22= 2 + 2.2 = 2 .( 1+2 ) = 2. 3
các phần còn lại tương tụ nhé !
2.3 nha