\(5^x+5^{x+1}+5^{x+2}=155\) tìm x Z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x(x+2)=0
suy ra x=0 hoặc x+2=0
5-2x=-7
2x=-7+5
2x=-(7-5)
2x=-2
x=-2:2
x=-1
Vậy x=-1
NHỚ TÍCH MK NHA
Tự học giúp bạn có được một gia tài
Jim Rohn – Triết lý cuộc đời
\(5^x+5^{x+1}+5^{x+2}=155\)
\(\Rightarrow5^x+5^x.5+5^x.25=155\)
\(\Rightarrow5^x\left(1+5+25\right)=155\)
\(\Rightarrow5^x=155:31=5=5^1\)
\(\Rightarrow x=1\)
Vậy x = 1
=5^x*1+5^x*5^1+5^x*5^2=155
=5^x*(1+5+25)=155
=5^x=155/31
=5^x=5
=x=1
5 ^ x + 1 + 5 ^ x + 2 + 5 ^ x + 3 = 155
=> 5 ^ x + 1 . ( 1 + 5 + 5 ^ 2 ) = 155
=> 5 ^ x + 1 . 31 = 155
=> 5 ^ x + 1 = 155 : 31
=> 5 ^ x + 1 = 5
=> x + 1 = 1
=> x = 0
5 + ( x + 27 ) = 64
( x + 27 ) = 64 - 5 ( x + 27 ) = 59 x = 59 - 27 x = 32a) \(\Rightarrow x+27=59\Rightarrow x=32\)
b) \(\Rightarrow x-2=39\Rightarrow x=41\)
c) \(\Rightarrow x+5=-322\Rightarrow x=-327\)
d) \(\Rightarrow5x=35\Rightarrow x=7\)
e) \(\Rightarrow4\left(x-5\right)=56\Rightarrow x-5=14\Rightarrow x=19\)
f) \(\Rightarrow15+x=37\Rightarrow x=22\)
g) \(\Rightarrow7\left(13-x\right)=35\Rightarrow13-x=5\Rightarrow x=8\)
h) \(\Rightarrow10\left(x+1\right)=100\Rightarrow x+1=10\Rightarrow x=9\)
\(a,\dfrac{2}{5}\times4+x=2\dfrac{2}{5}\\ \Rightarrow\dfrac{8}{5}+x=\dfrac{12}{5}\\ \Rightarrow x=\dfrac{12}{5}-\dfrac{8}{5}\\ \Rightarrow x=\dfrac{4}{5}\\ b,155\times2,7-x=98,3\\ \Rightarrow418,5-x=98,3\\ \Rightarrow x=418,5-98,3\\ \Rightarrow x=320,2\)
a) \(\dfrac{2}{5}\)x 4 + X = \(2\dfrac{2}{5}\)
\(\dfrac{8}{5}\) + X = \(\dfrac{12}{5}\)
X = \(\dfrac{12}{5}\)- \(\dfrac{8}{5}\)
X = \(\dfrac{4}{5}\)
b) 155 x 2,7 - X = 98,3
418,5 - X = 98,3
X = 418,5 - 98,3
X = 320,2
a)=>48+288:(x-3)^2=50
=>288:(x-3)^2=2
=>(x-3)^2=144
=>x-3=12=>x=15
a).(x+x+x+x+...+x)+(1+3+5+....+19)=245
=X*10+100=245
X*10=245-100
X*10=145
x=145:10
x=14,5
mk đi mk tl câu tiếp theo
a, \(x+1+x+3+.....+x+19=245\Rightarrow x+x+x+...+x+1+3+...+19=245\)
\(\Rightarrow10x+\frac{\left(19+1\right)\cdot10}{2}=245\Rightarrow10x+100=245\Rightarrow10x=145\Rightarrow x=14,5\)
b,\(x+2+x+4+...+x+20=155\Rightarrow x+x+...+x+2+4+...+20\)
\(\Rightarrow10x+\frac{\left(20+2\right)\cdot10}{2}=155\Rightarrow10x+110=155\Rightarrow10x=45\Rightarrow x=4,5\)
a, \(5^x+5^{x+1}+5^{x-2}=151\)
\(\Rightarrow5^x.\left(1+5+5^{-2}\right)=151\)
\(\Rightarrow5^x.6,04=151\Rightarrow5^x=25=5^2\)
Vì \(5\ne-1;5\ne0;5\ne1\) nên \(x=2\)
b, \(5^{x-1}+5^{x-2}+5^{x-3}=155\)
\(\Rightarrow5^x.\left(5^{-1}+5^{-2}+5^{-3}\right)=155\)
\(\Rightarrow5^x.0,248=155\Rightarrow5^x=625=5^4\)
Vì \(5\ne-1;5\ne0;5\ne1\) nên \(x=4\)
c, \(5^{2+x}+5^{3+x}=750\) \(\Rightarrow5^x.\left(5^2+5^3\right)=750\) \(\Rightarrow5^x.150=750\Rightarrow5^x=5=5^1\) Vì \(5\ne-1;5\ne0;5\ne1\) nên \(x=1\) Chúc bạn học tốt!!!\(•5^x+5^{x+1}+5^{x-2}=151\\ 5^x\left(1+5+\dfrac{1}{25}\right)=151\\ 5^x=25\\ \Rightarrow x=2\)
\(•5^{x-1}+5^{x-2}+5^{x-3}=155\\ 5^x.\left(\dfrac{1}{5}+\dfrac{1}{25}+\dfrac{1}{125}\right)=155\\ 5^x=625\\ \Rightarrow x=4\)
\(•5^{2+x}+5^{3+x}=750\\ 5^x\left(25+125\right)=750\\ 5^x=5\\ \Rightarrow x=1\)
\(5^x+5^{x+1}+5^{x+2}=155\)
=> \(5^x+5^x\cdot5+5^x\cdot5^2=155\)
=> \(5^x\cdot\left(1+5+5^2\right)=155\)
=> \(5^x\cdot31=155\)
=> \(5^x=155:31=5\)
=> \(x=1\)
5x+5x+1+5x+2=155
5x.(1+5+52)=155
5x.31=155
5x=5
=>x=1