Cho a+b≤1. Tìm giá trị nhỏ nhất của S =\(\dfrac{1}{a^3+b^3}\)+\(\dfrac{1}{a^2b}+\dfrac{1}{ab^2}\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
\(S=\dfrac{1}{a^3+b^3}+\dfrac{\dfrac{9}{4}}{3a^2b}+\dfrac{\dfrac{9}{4}}{3ab^2}+\dfrac{1}{4ab}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)
Áp dụng bđt Cauchy-Schwarz dạng Engel có:
\(S\ge\dfrac{\left(1+\dfrac{3}{2}+\dfrac{3}{2}\right)^2}{a^3+3a^2b+3ab^2+b^3}+\dfrac{1}{4ab}.\dfrac{4}{a+b}\)
\(\Leftrightarrow S\ge\dfrac{16}{\left(a+b\right)^3}+\dfrac{1}{\left(a+b\right)^2}.\dfrac{4}{a+b}\)
\(\Leftrightarrow S\ge\dfrac{16}{1}+\dfrac{1}{1}.\dfrac{4}{1}=20\)
Dấu "=" xảy ra khi \(a=b=\dfrac{1}{2}\)
Vậy GTNN của \(S=20\) khi \(a=b=\dfrac{1}{2}\)