Bài 1: Tìm số tự nhiên có hai chữ số sao cho tỉ số của số đó và tổng các chữ số của nó có giá trị nhỏ nhất
Bài 2: Tìm a,b,c \(\in\)Z* sao cho:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
Bài 3: Tìm ab biết:
aa . ab = abb + b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
Gọi số tự nhiên phải tìm là \(ab\)
\(\left(a,b\in N,1\le a\le9,0\le b\le9\right)\)
tỉ số giữa ab và a+b là k:
Ta có ; \(k=\frac{ab}{a+b}=\frac{10+b}{a+b}\le\frac{10a+10b}{a+b}\)\(=\frac{10.\left(a+b\right)}{a+b}=10\)
\(k=10\Leftrightarrow b=10b\Leftrightarrow b=0\)
Vậy k lớn nhất bằng 10 khi :
\(b=0,a\in\left(1,2,...,9\right)\)
Các số phải tìm là \(a0\) với a là chữ số khác 0
Chúc bạn học tốt ( -_- )
Bai 2 so minh da giai roi minh se giai bai 3 chu so nhe no tuong tu nhu bai 2 chu so chi khac mot chut ve cach nhan xet
Goi abc la so co 3 chu so (a >0 va a,b,c<10)
Theo de bai ta co
abc: (a+b+c) co gia tri nho nhat
Phan h cau tao so
abc = 100a +10b + c = 10(a+b+c) + 90a -9c
( Thêm vao 9xc va bớt ra 9xc)
thay the vao ta co
(10x(a+b+c) + 9(10a-c) ) : (a+b+c) = 10 + 9(10a-c) : ( a+b+c)
Nhan xet : 10 + 9(10a - c) : (a+b+c) dat gia tri nho nhat khi 9x(10a-c) : (a+b+c) dat gia tri lon nhat vi so 10 la khong thay doi
Xet phan so 9x(10a-c) : (a+b+c) phai dat gia tri nho nhat ma phai la so nguyen vay chi co the la tu so bang mau so
9x(10a-c) = a+b+c
gia su a , b,c nhan gia tri lon nhat va de bang 9
9+9+9 =27
suy ra 9x(10a-c) < 28
ta co 10a- c phải nho hơn 4 vi nếu bằng 4 thi 9x4 =36>27
Hiẹu 10a-c < 4 khi a bang 1 moi thoa dieu kien
thay vao phan so dang xet
9(10-c) = 1 + b+ c
90-9c =1+b+c
----> 10c = 89-b
de hieu 89-c chia het cho 10 thi hang don vi cua hieu do phai bang 0
Vậy : 9-b=0 <----> b = 9
----> c = (89-9) : 10 = 8
Kết luận de phân so abc : (a+b+c) dat gia tri nho nhat khi
a = 1, b = 9, c = 8
DS : so can tim de phan so co 3 chu so dat gia tri nho nhat la 198
ban lam tuong tu nhu phan tren de tim phan so co 3 chu so dat gia tri lon nhat nhe chuc ban thanh cong
a) \(A=\left(\frac{1}{1-x}+\frac{2}{x+1}-\frac{5-x}{1-x^2}\right):\frac{1-2x}{x^2-1}\) (ĐKXĐ: \(x\ne\pm1\) )
\(=\left(\frac{x+1+2\left(1-x\right)-5+x}{1-x^2}\right):\frac{1-2x}{x^2-1}\)
\(=\left(\frac{x+1+2-2x-5+x}{1-x^2}\right):\frac{1-2x}{x^2-1}\)
\(=\left(\frac{-2}{1-x^2}\right):\frac{1-2x}{x^2-1}\)
\(=\frac{2}{x^2-1}.\frac{x^2-1}{1-2x}=\frac{2}{1-2x}\)
b) Để x nhận giá trị nguyên <=> 2 chia hết cho 1 - 2x
<=> 1-2x thuộc Ư(2) = {1;2;-1;-2}
Nếu 1-2x = 1 thì 2x = 0 => x= 0
Nếu 1-2x = 2 thì 2x = -1 => x = -1/2
Nếu 1-2x = -1 thì 2x = 2 => x =1
Nếu 1-2x = -2 thì 2x = 3 => x = 3/2
Vậy ....
VD tổng nghịch đâỏ cảu ba số này là 2 thì:
Số lớn nhất là a, số nhỏ nhất là c.
Ta có: c ≤ b ≤ a (1)
Theo giả thiết : \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) = 2 (2)
Do (1) nên 2 = \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) ≤ \(\dfrac{3}{c}\)
Vậy c = 1
Thay vào (2) ta dc :\(\dfrac{1}{a}+\dfrac{1}{b}\) = 1 ≤ \(\dfrac{2}{b}\)
Vậy a = 2 từ đó b = 2
3 số cần tìm là 1; 2; 2.
Bài 5:
Vì số cần tìm nhỏ nhất nên ta lần lượt thử chọn với các giá trị số nhỏ nhất.
- Giả sử số tự nhiên có dạng 11111a
=> 111110 + a chia hết cho 1987. Vì 111110 chia 1987 dư 1825
=> a chia 1987 dư 162 ( vô lí - 162 > a).
- Giả sử số tự nhiên có dạng 11111ab
=> 1111100 + ab chia hết cho 1987. Vì 1111100 chia 1987 dư 367=> ab chia 1987 dư 1620 ( vô lí - 1620 > ab)
- Giả sử số tự nhiên có dạng 11111abc
=> 11111000 + abc chia hết cho 1987. Vì 11111000 chia 1987 dư 1683
=> abc chia 1987 dư 304. Mà abc nhỏ nhất
=> abc = 304
Vậy số tự nhiên là 11111304
Bài 1:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)
hay \(\frac{a}{b}=\frac{a+b+c}{b+c+d}\)
\(\frac{b}{c}=\frac{a+b+c}{b+c+d}\)
\(\frac{c}{d}=\frac{a+b+c}{b+c+d}\)
Nhân vế theo vế của 3 đẳng thức trên ta có:
\(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\)
mà \(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\)
\(\Rightarrow\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\left(đpcm\right)\)
Bài 2: Không làm được, thông cảm. Gợi ý: Áp dụng chia tỉ lệ