AI giúp mình bài 16 từ 1-10 với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo!
Mùa xuân, cây gạo gọi đến bao nhiêu là chim. Từ xa nhìn lại, cây gạo sừng sững như một tháp đèn khổng lồ. Hàng ngàn bông hoa là hàng ngàn ngọn lửa hồng. Hàng ngàn búp nõn là hàng ngàn ánh nến trong xanh. Tất cả đều lóng lánh lung linh trong nắng. Chào mào, sáo sậu, sáo đen, đàn đàn lũ lũ bay đi bay về. Chúng nó gọi nhau, trêu ghẹo nhau, trò chuyện ríu rít. Ngày hội mùa xuân đấy...
Hết mùa hoa, chim chóc cũng vãn. Cây gạo chấm dứt những ngày tưng bừng, ồn ã, lại trở về với dáng vẻ xanh mát, trầm tư. Cây đứng im cao lớn, làm tiêu cho những con cò cập bến và những đứa con về thăm quê mẹ.
9.
\(\Leftrightarrow a^2+a^2b^2+b^2+b^2c^2+c^2+c^2a^2\ge6abc\)
\(\Leftrightarrow\left(a^2-2abc+b^2c^2\right)+\left(b^2-2abc+c^2a^2\right)+\left(c^2-2abc+a^2b^2\right)\ge0\)
\(\Leftrightarrow\left(a-bc\right)^2+\left(b-ca\right)^2+\left(c-ab\right)^2\ge0\) (luôn đúng)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(0;0;0\right);\left(1;1;1\right);\left(1;-1;-1\right)\) và các hoán vị
10.
\(a^2+b^2+c^2=1\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=1+2\left(ab+bc+ca\right)\)
\(\Leftrightarrow\left(a+b+c\right)^2=1+2\left(ab+bc+ca\right)\)
\(\Rightarrow1+2\left(ab+bc+ca\right)\ge0\Rightarrow ab+bc+ca\ge-\dfrac{1}{2}\)
Lại có:
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)
\(\Rightarrow ab+bc+ca\le1\)
11.
Do \(a^2+b^2+c^2=1\Rightarrow\left\{{}\begin{matrix}\left|a\right|\le1\\\left|b\right|\le1\\\left|c\right|\le1\end{matrix}\right.\) \(\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge0\)
Do đó:
\(abc+2\left(1+a+b+c+ab+bc+ca\right)\)
\(=1+a+b+c+ab+bc+ca+\left(1+a+b+c+ab+bc+ca+abc\right)\)
\(=\dfrac{1}{2}\left(a^2+b^2+c^2\right)+ab+bc+ca+a+b+c+\dfrac{1}{2}+\left(a+1\right)\left(b+1\right)\left(c+1\right)\)
\(=\dfrac{1}{2}\left(a+b+c\right)^2+\left(a+b+c\right)+\dfrac{1}{2}+\left(a+1\right)\left(b+1\right)\left(c+1\right)\)
\(=\dfrac{1}{2}\left(a+b+c+1\right)^2+\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge0\) (đpcm)
Ta có:2A=\(2+1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\)
2A-A=\(\left(2+1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\right)\)
\(=2-\frac{1}{32}=\frac{63}{32}=A\)
Ta có: \(A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\)
\(\Rightarrow A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}\)
\(\Rightarrow2A=2+1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}\)
\(\Rightarrow2A-A=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}\right)\)
\(\Rightarrow A=1-\frac{1}{2^5}=\frac{31}{32}\)
Vậy \(A=\frac{31}{32}\)
1)\(\dfrac{2}{9}+\dfrac{-3}{4}+\dfrac{5}{30}\)
\(=\dfrac{2.20}{9.20}+\dfrac{-3.45}{4.45}+\dfrac{5.6}{30.6}\)
\(=\dfrac{40}{180}+\dfrac{-135}{180}+\dfrac{30}{180}\)
\(=\dfrac{40+\left(-135\right)+30}{180}\)
\(=\dfrac{-65}{180}\)
\(=\dfrac{-13}{36}\)
2)\(\dfrac{-7}{12}-\dfrac{11}{18}\)
\(=\dfrac{-7.3}{12.3}-\dfrac{11.2}{18.2}\)
\(=\dfrac{-21}{36}-\dfrac{22}{36}\)
\(=\dfrac{-21-22}{36}\)
\(=\dfrac{-43}{36}\)
3)\(\dfrac{7}{8}-\dfrac{-5}{16}\)
\(=\dfrac{7.2}{8.2}-\dfrac{-5}{16}\)
\(=\dfrac{14}{16}-\dfrac{-5}{16}\)
\(=\dfrac{14-\left(-5\right)}{16}\)
\(=\dfrac{19}{16}\)
4)\(\dfrac{3}{8}-\dfrac{-9}{10}-\dfrac{5}{16}\)
\(=\dfrac{3.10}{8.10}-\dfrac{-9.8}{10.8}-\dfrac{5.5}{16.5}\)
\(=\dfrac{30}{80}-\dfrac{-72}{80}-\dfrac{25}{80}\)
\(=\dfrac{30-\left(-72\right)-25}{80}\)
\(=\dfrac{77}{80}\)