phân tích thành nhân tử với x>=0
a, x-1
b, x-\(\sqrt{x}\)-2
c, x\(\sqrt{x}\)+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=\sqrt{xy}\left(\sqrt{x}-1\right)+\left(\sqrt{x}-1\right)=\left(\sqrt{xy}+1\right)\left(\sqrt{x}-1\right)\\ b,=\sqrt{xy}\left(\sqrt{x}+1\right)+\left(\sqrt{x}+1\right)=\left(\sqrt{x}+1\right)\left(\sqrt{xy}+1\right)\)
\(x+2\sqrt{x-1}=\left(x-1\right)+2\sqrt{x-1}+1=\left(\sqrt{x-1}+1\right)^2\)
\(x-4\sqrt{x-2}+2=\left(x-2\right)-4\sqrt{x-2}+4=\left(\sqrt{x-2}-2\right)^2\)
\(x+2\sqrt{x-1}=\left(\sqrt{x-1}+1\right)^2\)
\(x-4\sqrt{x-2}+2=\left(\sqrt{x-2}+4\right)^2\)
\(=\left(\sqrt{x}\right)^3-1^3=\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)\)
\(x\sqrt{x}-1=\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)\)
a: \(B=\dfrac{\sqrt{x}+\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\dfrac{x+2\sqrt{x}}{2\sqrt{x}}=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
b: B>2A
=>\(\dfrac{\sqrt{x}+1}{\sqrt{x}}>2\)
=>-căn x+1>0
=>-căn x>-1
=>căn x<1
=>0<x<1
d: \(=-\left(x+\sqrt{x}-12\right)=-\left(\sqrt{x}+4\right)\left(\sqrt{x}-3\right)\)
\(x-\sqrt{x}-6=\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)\)
\(2x+5\sqrt{x}-3=\left(\sqrt{x}+3\right)\left(2\sqrt{x}-1\right)\)
a) \(x-1=\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)
b) \(x-\sqrt{x}-2=\left(\sqrt{x}-2\right)\cdot\left(\sqrt{x}+1\right)\)
c) \(x\sqrt{x}+1=\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)\)
\(a.x-1=\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\\ b.x-\sqrt{x}-2=\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)\\ c.x\sqrt{x}+1=\sqrt{x^3}+\sqrt{1^3}=\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)\)