Cho tam giác PQR có góc R tù, góc P bằng \(18^0\), trên cạnh PR lấy điểm T sao cho góc \(\widehat{PTQ}=150^0\), biết cạnh RT=5, TQ=8. Hãy tính
a) Độ dài cạnh PT
b) Diện tích tam giác PQR
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ QS⊥PR
Ta có : \(\widehat{QTS}=180^0-\widehat{QTP}=180^0-150^0=30^0\)
Trong tam giác vuông QST, ta có:
\(QS=QT.sinQTS=8.sin30^0=4\left(cm\right)\)
\(TS=QT.cosQTS=8.cos30^0\sim6,928\left(cm\right)\)
Trong tam giác vuông QSP, ta có:
\(SP=QS.cotQPS=4.cot18^0=12,311\left(cm\right)\)
\(PT=SP-TS\sim12,311-6,928\sim5,383\left(cm\right)\)
b) Ta có:
\(S_{QPR}=\frac{1}{2}.QS.PR=\frac{1}{2}.QS.\left(PT+TR\right)\sim\frac{1}{2}.4.\left(5,383+5\right)\sim20,766\left(cm^2\right)\)
\(a,\Delta ABC=\Delta PQR\\ \Rightarrow\widehat{Q}=\widehat{B}=55^0\\ \Rightarrow\widehat{A}+\widehat{C}=180^0-\widehat{B}=125^0\\ 3\widehat{A}=2\widehat{C}\Rightarrow\dfrac{\widehat{A}}{2}=\dfrac{\widehat{C}}{3}=\dfrac{\widehat{A}+\widehat{C}}{2+3}=\dfrac{125^0}{5}=25^0\\ \Rightarrow\left\{{}\begin{matrix}\widehat{A}=50^0\\\widehat{C}=75^0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\widehat{P}=\widehat{A}=50^0\\\widehat{R}=\widehat{C}=75^0\end{matrix}\right.\)
\(b,\text{Đề thiếu}\)
a) \(\widehat{A}\)+\(\widehat{C}\)= 180-55=1250
\(\widehat{A}\)=\(\widehat{P}\)=125:5x3=750
\(\widehat{C}\)=\(\widehat{R}\)=180-55-75=500
b) đề bài có thiếu ko:v