Bài 3:Cho tam giác ABC cân tại A. Có BD và CE là hai đường trung điểm; D thuộc AC, E thuộc AB. Chứng minh rằng
a)Tam giác ADE cân tại A
b)Tam giác ABD = Tam giác ACE
c)BCDE là hình thang cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét ΔECB và ΔDBC, ta có :
EC = BD (gt)
\(\widehat{B}=\widehat{C}\) (2 góc đáy của ΔABC cân tại A)
BC là cạnh chung
=> ΔECB = ΔDBC (c.g.c)
=> \(\widehat{GBC}=\widehat{GCB}\) (2 góc tương ứng)
vì ΔGBC có \(\widehat{GBC}=\widehat{GCB}\) nên ⇒ ΔGBC là một tam giác cân (cân tại G)
Sử dụng tính chất đường trung bình, ta chứng minh được DE//BC
Xét ΔABC có
\(\dfrac{AE}{AB}=\dfrac{AD}{AC}\)
Do đó: DE//CB
Xét tứ giác BEDC có DE//BC
nên BEDC là hình thang
mà \(\widehat{EBC}=\widehat{DCB}\)
nên BEDC là hình thang cân
bạn ơi bạn chứng minh sai rùi ở cuối ý nếu mà 2 góc đáy bằng nhau chưa chắc đã là hình thang cân đâu chẳng hạn hình vuông 2 đáy cũng = nhau ......
nên bạn cm sai rùi sửa lại đi bạn cm 2 đường chéo bằng nhau
Bạn tự vẽ hình nhé. Mình giải thôi.
1)Bạn chia 2 TH.
a) Góc MDB lớn hơn hoac bằng 60 độ
=>MD<MB mà ME>MC=MB
=>MD<ME.
b) Góc MDB nhỏ hơn 60 độ.
=> MD giao CA tại E .
Dễ dàng cminh DM<ME.
2) Ta có tam giác ABC cân tại A => AI là phân giác cũng là trung trực BC
=> AI trung trực BC. Mà AO là trung trục BC.
=> AI trùng AO.
=>OI là trung trực BC
Đè bài cần xem lại nhé.
3)Ta có góc B > góc C => AC>AB
Có AC đối dienj góc vuông trong tam giác vuông AEC => AC>CE
Tương tự AB>BD
Tất cả các điều => AC-AB>CE-BD
Lời giải:
Vì $D$ là trung điểm $AC, $E$ là trung điểm $AB$ nên $ED$ là đường trung bình ứng với cạnh $BC$ của tam giác $ABC$
$\Rightarrow ED\parallel BC$
$\Rightarrow BEDC$ là hình thang.
Mà 2 góc ở đáy $\widehat{B}=\widehat{C}$ (do tam giác $ABC$ cân tại $A$)
$\Rightarrow BEDC$ là hình thang cân.
a) Ta có : \(\Delta\)ABC cân tại A =.>AB=AC mà BD là trung tuyến =.>AD=DC ;CE là trung tuyến => AE=EB
=> AE=AD
=>\(\Delta\)AED cân tại a
a) Ta có: \(AD=DC=\dfrac{AC}{2}\)(D là trung điểm của AC)
\(AE=EB=\dfrac{AB}{2}\)(E là trung điểm của AB)
mà AC=AB(ΔBAC cân tại A)
nên AD=DC=AE=EB
Xét ΔADE có AE=AD(cmt)
nên ΔADE cân tại A(Định nghĩa tam giác cân)
b) Xét ΔADB và ΔAEC có
AB=AC(ΔABC cân tại A)
\(\widehat{BAD}\) chung
AD=AE(cmt)
Do đó: ΔADB=ΔAEC(c-g-c)
c) Ta có: ΔAED cân tại A(gt)
nên \(\widehat{AED}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔAED cân tại A)(1)
Ta có: ΔABC cân tại A(gt)
nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔABC cân tại A)(2)
Từ (1) và (2) suy ra \(\widehat{AED}=\widehat{ABC}\)
mà hai góc này là hai góc ở vị trí đồng vị
nên ED//BC(Dấu hiệu nhận biết hai đường thẳng song song)
Xét tứ giác BCDE có ED//BC(cmt)
nên BCDE là hình thang có hai đáy là ED và BC(Định nghĩa hình thang)
Hình thang BCDE(ED//BC) có BD=EC(ΔADB=ΔAEC)
nên BCDE là hình thang cân(Dấu hiệu nhận biết hình thang cân)