K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔMAB và ΔMDC có

MA=MD(gt)

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)

MB=MC(M là trung điểm của BC)

Do đó: ΔMAB=ΔMDC(c-g-c)

b) Ta có: ΔMAB=ΔMDC(cmt)

nên \(\widehat{MAB}=\widehat{MDC}\)(hai góc tương ứng)

mà \(\widehat{MAB}\) và \(\widehat{MDC}\) là hai góc ở vị trí so le trong

nên AB//CD(Dấu hiệu nhận biết hai đường thẳng song song)

mà AB⊥AC(gt)

nên DC⊥AC

c) Xét ΔABC vuông tại A và ΔCDA vuông tại C có 

CA chung

BA=DC(ΔMAB=ΔMDC)

Do đó: ΔABC=ΔCDA(Hai cạnh góc vuông)

Suy ra: BC=DA(Hai cạnh tương ứng)

mà \(MA=\dfrac{1}{2}DA\)(M là trung điểm của DA)

nên \(MA=\dfrac{1}{2}BC\)

3 tháng 7 2021

a)

Xét tam giác MAB và tam giác MDC có :

MA = MD( theo giả thiết)

BM = MC ( vì AM là trung tuyến của tam giác ABC)

góc AMB = góc CMD(vì đối đỉnh)

Do đó tam giác MAB = tam giác MCD( c.c.c)

b)

Theo câu a), suy ra góc BAM = góc MDC

Suy ra : AB // CD

mà AB ⊥ AC nên CD ⊥ AC

c)

Vì AM là tia trung tuyến thuộc cạnh huyền BC nên AM = \(\dfrac{1}{2}\)BC

Suy ra : AM = BM = MC

Suy ra:  tam giác AMC cân tại M

Do đó góc MAC = góc MCA

Xét tam giác ABC vuông tại A và tam giác CDA vuông tại C, ta có: 

Cạnh AC chung

Góc MAC = Góc MCA

Do đó tam giác ABC = tam giác CDA( cạnh huyện- gọc nhọn kề)

 

23 tháng 12 2016

Bn tự vẽ hình nha!!!

a) Xét \(\Delta ABM\)\(\Delta DCM\) có:

MB = MC (M là trung điểm BC (gt))

\(\widehat{AMB} = \widehat{DMC}\)(đối đỉnh)

MA = MD (gt)

\(\Rightarrow\)\(\Delta ABM = \Delta DCM (cgc)\)

b) Vì \(\Delta ABM = \Delta DCM (cmt)\)

\(\Rightarrow\)\(\widehat{BAM} = \widehat{CDM}\) (2 góc tương ứng)

mà 2 góc này nằm ở vị trí so le trong

\(\Rightarrow\) AB // CD

c) \(\Delta ABM = \Delta DCM (cmt)\)

\(\Rightarrow\) AB = DC (2 cạnh tương ứng)Vì AB // CD (cmt)\(AB \perp AC \)\(\Rightarrow\) \(CD \perp AC\) (Định lí 2 bài từ vuông góc đến song song)Xét \(\Delta ABC\)\(\Delta CDA\) có:\(\widehat{BAC} = \widehat{DCA} = 90^0 \)AB = CD (cmt)AC chung\(\Rightarrow\)\(\Delta ABC = \Delta CDA\) (2 cạnh góc vuông)\(\Rightarrow\) AD = BC (2 cạnh tương ứng)mà \(AM=\frac{1}{2}AD\)\(\Rightarrow AM=\frac{1}{2}BC\) 

 

23 tháng 12 2016

cảm ơn bạn nhìu nhìu lắm

17 tháng 4 2019

đề bài sai nhé, bn xem lại câu a

17 tháng 4 2019

Mình ghi nhầm: 

a) Chứng minh: tam giác MAB= tam giác MDC. Suy ra góc ACD vuông

b) Gọi K là trung điểm của AC. Chứng minh: KB=KD

c) KD cắt BC tại I. KB cắt AD tại N. Chứng minh : tam giác KNI cân

mk hiện tại không giải cho bạn được vì chuẩn bị thi hsg r bạn 

18 tháng 5 2015

A B C M D

a) Xét tam giác MAB và tam giác MDC có:

                     MB=MA(gt) ;  góc AMB = góc DMC (đối đỉnh) ;MB=MC (AM là trung tuyến ứng với BC)

-> Tam giác MAB = tam giác MDC (c.g.c)

-> góc CDM = góc BAM

-> CD song song với AB

-> góc DCA + góc BAC =180o (hai góc trong cùng phía)

   góc DCA + 900 =180o

-> góc DCA = 90o

 Vậy tam giác ACD vuông tại C

28 tháng 6 2021

b,- Ta có : AM là đường trung tuyến của tam giác vuông ABC .

=> AM = BM = CM = KM .

Xét \(\Delta MKC\)\(\Delta MAB\) có :

\(\left\{{}\begin{matrix}BM=MC\\AM=MK\\\widehat{BMA}=\widehat{KMC}\end{matrix}\right.\)

=> \(\Delta MKC\) = \(\Delta MAB\) ( c - g - c )

- Xét tứ giác ABKC có :

AM = BM = CM = KM và tam giác ABC vuông tại A .

=> Tứ giác ABKC là hình chữ nhật.

=> KC vuông góc với AC .

c, - Áp dụng định lý pitago vào tam giác ABC vuông tại A :

\(BC=\sqrt{AB^2+AC^2}=13\left(cm\right)\)

Ta có : \(AM=\dfrac{1}{2}BC=\dfrac{13}{2}\)

28 tháng 6 2021

thanks

 

6 tháng 9 2020

câu a: xét 2 tam giác MAB vs MCD :

ta có : AM = DM (gt)

góc BMA = góc DMC ( đối đỉnh)

MB = MC (gt)

=> tam giác MAB = tam giác MDC (c.g.c)

câu b: ta có : AC > AB

AB = CD ( 2 cạnh tương ứng)

=> AC > CD ( tính chất bắt cầu )

câu c: xét 2 tam giác ABK va ADK

ta có : AB = DC ( như câu a)

KA = KC ( gt )

=> tam giác ABK = tam giác CDK ( 2 cạnh góc vuông )

câu d : xét 2 tam giác NAK và ICK

ta có : AK = KC ( gt )

góc NAK = góc ICK (Vì :

*1: có góc A = góc C ( vuông )

*2:góc BAN = DCI ( như câu a)

từ *1 và *2 => góc A - góc BAN = góc NAK và góc C - góc DCI = góc ICK

=> góc NAK = góc ICK )

góc DKC = góc BKA ( như câu c )

=> tam giác NAK = tam giác ICK ( g.c.g )

=> NK = NI ( 2 cạnh tương ứng )

=> tam giác NKI cân tại K ( vì có NK = IK) .

Hy vọng nó đúng vì tui ko chắc ăn tam giác ACD có vuông hay ko . chúc bạn hc giỏi

6 tháng 9 2020

d,CM AM<1/2(AB+AC).Điều này không đúng nếu tam giác ABC không là tam giác vuông.

16 tháng 4 2018

Em tham khảo tại link dưới đây nhé.

Câu hỏi của Phạn - Toán lớp 7 - Học toán với OnlineMath

16 tháng 4 2018

a) Chứng minh tam giác MAB bắng tam giác MDC. Suy ra tam giác ACD vuông.

b) Gọi k là trung điểm AC. Chứng minh KB=KD.

c) KD cắt BC tại I, KB cắt AD tại N. Chứng minh tam giác KNI cân.