Giải giúp mik 2 bài này trog tối nay ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
uses crt;
var st:string;
d,i,t,x,y,a,b:integer;
begin
clrscr;
readln(st);
d:=length(st);
for i:=1 to d do write(st[i]:4);
writeln;
t:=0;
for i:=1 to d do
begin
val(st[i],x,y);
t:=t+x;
end;
writeln(t);
val(st[d],a,b);
if (a mod 2=0) then write(1)
else write(-1);
readln;
end.
#include <bits/stdc++.h>
using namespace std;
long long a[1000],i,n,t,dem,t1;
int main()
{
cin>>n;
for (i=1; i<=n; i++) cin>>a[i];
t=0;
for (i=1; i<=n; i++) if (a[i]%2==0) t+=a[i];
cout<<t<<endl;
t1=0;
dem1=0;
for (i=1; i<=n; i++)
if (a[i]<0)
{
cout<<a[i]<<" ";
t1+=a[i];
dem1++;
}
cout<<endl;
cout<<fixed<<setprecision(1)<<(t1*1.0)/(dem1*1.0);
return 0;
}
#include <bits/stdc++.h>
using namespace std;
long long a,b;
//chuongtrinhcon
long long gcd(long long a,long long b)
{
if (b==0) return(a);
return gcd(b,a%b);
}
//chuongtrinhchinh
int main()
{
cin>>a>>b;
cout<<max(a,b)<<endl;
cout<<gcd(a,b)<<endl;
if ((a>0 && b>0) or (a<0 && b<0)) cout<<a/gcd(a,b)<<" "<<b/gcd(a,b);
else cout<<"-"<<-a/gcd(-a,b)<<" "<<b/gcd(-a,b);
return 0;
}
Nữa chu vi là
100:2=50 (cm)
CHiều dài là
50 : ( 2+3) x 3 = 30 (cm)
Chiều rộng là
50-30 = 20 (cm)
Diện tích hình chữ nhật là
20x30= 600 (cm2)
Số bé nhất có 3 chữ số là : 100
Số Bình nghĩ ra là : 100 - 15 = 85
Vậy số Bình nghĩ ra là số 85
Đáp số : 85
Bài `1`
\(a,A=a\left(a+b\right)-b\left(a+b\right)\\ =\left(a+b\right)\left(a-b\right)\)
Với `a=9;=10`
Ta có :
\(\left(a+b\right)\left(a-b\right)\\=\left(9+10\right)\left(9-10\right)\\ =19.\left(-1\right)\\ =-19\)
\(b,B=\left(3x+2\right)^2+\left(3x-2\right)^2-2\left(3x+2\right)\left(3x-2\right)\\ =\left(3x+2\right)^2-2\left(3x+2\right)\left(3x-2\right)+\left(3x-2\right)^2\\ =\left[\left(3x+2\right)-\left(3x-2\right)\right]^2\)
Với `x=-4`
Ta có :
\(\left[\left(3x+2\right)-\left(3x-2\right)\right]^2\\ =\left(3.4+2-3.4+2\right)^2\\ =\left(12+2-12+2\right)^2\\ =4^2\\ =16\)
\(2,\\ x^3-6x^2+9x\\ =x\left(x^2-6x+9\right)\\ =x\left(x-3\right)^2\\ x^2-2x-4y^2-4y\\ \)
`->` có đúng đề ko cậu
2:
b; x^2-4y^2-2x-4y
=(x-2y)*(x+2y)-2(x+2y)
=(x+2y)(x-2y-2)
a: x^3-6x^2+9x
=x(x^2-6x+9)
=x(x-3)^2
\(\left|2x-3\right|=3-2x\)
\(ĐK:x\le\dfrac{3}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=3-2x\\3-2x=3-2x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\0=0\left(đúng\right)\end{matrix}\right.\)
Vậy \(S=\left\{x\in R;x=\dfrac{3}{2}\right\}\)
a) Xét tam giác ABE và tam giác ACE có:
+ AE chung.
+ AB = AC (gt).
+ BE = CE (E là trung điểm của BC).
=> Tam giác ABE = Tam giác ACE (c - c - c).
b) Xét tam giác ABC có: AB = AC (gt).
=> Tam giác ABC cân tại A.
Mà AE là đường trung tuyến (E là trung điểm của BC).
=> AE là phân giác ^BAC (Tính chất các đường trong tam giác cân).
c) Xét tam giác ABC cân tại A có:
AE là phân giác ^BAC (cmt).
=> AE là đường cao (Tính chất các đường trong tam giác cân).
=> AE \(\perp\) BC.
Xét tam giác BIE và tam giác CIE:
+ IE chung.
+ BE = CE (E là trung điểm của BC).
+ ^BEI = ^CEI ( = 90o).
=> Tam giác BIE = Tam giác CIE (c - g - c).
\(A=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}\)
\(=\left[\dfrac{x+2}{\sqrt{x^3}-1}+\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\sqrt{x^3}-1}-\dfrac{x+\sqrt{x}+1}{\sqrt{x^3}-1}\right]:\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}\)
\(=\left(\dfrac{x+2+x-\sqrt{x}+2\sqrt{x}-2-x-\sqrt{x}-1}{\sqrt{x^3}-1}\right):\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}\)
\(=\dfrac{x-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{x+\sqrt{x}+1}{\sqrt{x}+1}\)
\(=1\)
\(P=\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-1}-\dfrac{\sqrt{a}-1}{\sqrt{a}+1}+4\sqrt{a}\right).\dfrac{1}{2a\sqrt{a}}\)
\(=\left[\dfrac{\left(\sqrt{a}+1\right)^2}{a-1}-\dfrac{\left(\sqrt{a}-1\right)^2}{a-1}+\dfrac{4\sqrt{a}\left(a-1\right)}{a-1}\right].\dfrac{1}{2a\sqrt{a}}\)
\(=\left(\dfrac{a+2\sqrt{a}+1-a+2\sqrt{a}-1+4a\sqrt{a}-4\sqrt{a}}{a-1}\right).\dfrac{1}{2a\sqrt{a}}\)
\(=\dfrac{4a\sqrt{a}}{a-1}.\dfrac{1}{2a\sqrt{a}}\)
\(=\dfrac{2}{a-1}\)