Tìm x, y biết |y| = -|x|+6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 => x-1/3=y-2/4=z-3/5
áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1
do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương tự
Bài 1:
a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )
\(xy+3x-y=6\\ \Rightarrow x\left(y+3\right)-y-3=3\\ \Rightarrow x\left(y+3\right)-\left(y+3\right)=3\\ \Rightarrow\left(x-1\right)\left(y+3\right)=3\)
Vì \(x,y\in Z\Rightarrow\left\{{}\begin{matrix}x-1,y+3\in Z\\x-1,y+3\inƯ\left(3\right)\end{matrix}\right.\)
Ta có bảng:
x-1 | -1 | -3 | 1 | 3 |
y+3 | -3 | -1 | 3 | 1 |
x | 0 | -2 | 2 | 4 |
y | -6 | -4 | 0 | -2 |
Vậy \(\left(x,y\right)\in\left\{\left(0;-6\right);\left(-2;-;\right);\left(2;0\right);\left(4;-2\right)\right\}\)
`-3x=2y `
`=> x/2 = -y/3 `
AD t/c của dãy tỉ số bằng nhau ta có
`x/2 =-y/3 = (x-y)/(2+3) = 6/5`
`=>{(x=2*6/5 = 12/5),(y=-3*6/5 =-18/5):}`
a) `6/x =-3/2`
`=>x =6 :(-3/2) = 6*(-2/3)=-4`
`b)`\(-3x=2y\Rightarrow\dfrac{x}{2}=\dfrac{y}{-3}\)
Áp dụng t/c của DTSBN , ta đc :
\(\dfrac{x}{2}=\dfrac{y}{-3}=\dfrac{x-y}{2+3}=\dfrac{6}{5}\\ \Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{6}{5}\\\dfrac{y}{-3}=\dfrac{6}{5}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{12}{5}\\y=-\dfrac{18}{5}\end{matrix}\right. \)
`a)`
`6/x=-3/2`
`x=6:(-3/2)`
`x=6*(-2/3)`
`x=-4`
\(\dfrac{x-7}{y-6}=\dfrac{7}{6}\\ \Leftrightarrow6\left(x-7\right)=7\left(y-6\right)\\ \Leftrightarrow6x-42=7y-42\\ \Leftrightarrow6x=7y\\ \Leftrightarrow\dfrac{x}{7}=\dfrac{y}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có;
\(\dfrac{x}{7}=\dfrac{y}{6}=\dfrac{x-y}{7-6}=\dfrac{-4}{1}=-4\)
\(\dfrac{x}{7}=-4\Rightarrow x=-4.7\Rightarrow x=-28\\ \dfrac{y}{6}=-4\Rightarrow y=-4.6\Rightarrow y=-24\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{18}=\dfrac{x+y-z}{10+15-18}=\dfrac{25}{7}\)
Do đó: \(\left\{{}\begin{matrix}x=\dfrac{250}{7}\\y=\dfrac{375}{7}\\y=\dfrac{480}{7}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\\dfrac{y}{5}=\dfrac{z}{6}\end{matrix}\right.\)\(\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{18}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{18}=\dfrac{x+y-z}{10+15-18}=\dfrac{25}{7}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{25}{7}.10=\dfrac{250}{7}\\y=\dfrac{25}{7}.15=\dfrac{375}{7}\\z=\dfrac{25}{7}.18=\dfrac{450}{7}\end{matrix}\right.\)
Vì ƯCLN(\(x;y\)) = 6
⇒ \(x\) = 6.k; y = 6.d; k; d \(\in\) N; (k;d) = 1
Theo bài ra ta có: 6.k.6.d = 432
k.d = 432:(6.6)
k.d = 12
12 = 22.3; Ư(12) = {1; 2; 3; 4;6; 12}
Lập bảng ta có:
k.d | 12 | 12 | 12 | 12 | 12 | 12 |
k | 1 | 2 | 3 | 4 | 6 | 12 |
d | 12 | 6 | 4 | 3 | 2 | 1 |
Vì \(x;y\) nguyên tố cùng nhau và \(x\) < y nên theo bảng trên ta có:
(k; d) = (1; 12); (3;4)
Vậy \(x\) = 6.1⇒ \(x\) = 6; y = 6.12 ⇒ y = 72
hoặc \(x\) = 6.3 ⇒ \(x\) = 18; y = 6.4 ⇒ y = 24
Kết luận các cặp (\(x;y\)) thỏa mãn đề bài là:
(\(x;y\)) = (6; 72); (18; 24)
\(\text{(x+2)(y-3)=5 }\)
\(\Rightarrow\)x+2;y-3\(\in\)Ư(5)
Mà Ư(5)={1;5;-1;-5}
Có bảng:
Th1:
x+2=1;y-3=6
=>x=-3
y=9
Tương tự 3 trường hợp còn lại