So sánh : 2020.2022 và 20212
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=2020.2022
=2020.(2021+1)
=2020.2021+2020
B=2021.2021
=2021.(2020+1)
=2021.2020+2021
Mà 2020.2021+2020 < 2021.2020+2021
Nên A < B
11111111 - 2222
=(11110000+1111)-2.1111
=1111(10000+1)-2.1111
=1111(10000+1-2)
=1111.9999
=1111.9.1111
=1111.3.3.1111
=3333.3333
\(\sqrt{2021^2+2022^2+2021^2.2022^2}\)
\(=\sqrt{2021^2+\left(2021+1\right)^2+\left(2021.2022\right)^2}\)
\(=\sqrt{2021^2+2021^2+2.2021+1+\left(2021.2022\right)^2}\)
\(=\sqrt{2.2021.2022+1+\left(2021.2022\right)^2}\)
\(=\sqrt{\left(2021.2022+1\right)^2}\)
\(=2021.2022+1\) là 1 số nguyên (đpcm)
\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2020}\)\(-\dfrac{1}{2022}\)
\(=1-\dfrac{1}{2022}\)
\(=\dfrac{2021}{2022}\)
Sửa đề: \(\dfrac{4}{2\cdot4}+\dfrac{4}{4\cdot6}+\dfrac{4}{6\cdot8}+...+\dfrac{4}{2018\cdot2020}+\dfrac{4}{2020\cdot2022}\)
Ta có: \(\dfrac{4}{2\cdot4}+\dfrac{4}{4\cdot6}+\dfrac{4}{6\cdot8}+...+\dfrac{4}{2018\cdot2020}+\dfrac{4}{2020\cdot2022}\)
\(=2\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+\dfrac{2}{6\cdot8}+...+\dfrac{2}{2018\cdot2020}+\dfrac{2}{2020\cdot2022}\right)\)
\(=2\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+...+\dfrac{1}{2018}-\dfrac{1}{2020}+\dfrac{1}{2020}-\dfrac{1}{2022}\right)\)
\(=2\left(\dfrac{1}{2}-\dfrac{1}{2022}\right)\)
\(=2\cdot\dfrac{505}{1011}\)
\(=\dfrac{1010}{1011}\)
a. Ta có: \(17^2-14.17+49=17^2-2.7.17+7^2=\left(17-7\right)^2=10^2=100\)
b. \(2021^2-2020^2=\left(2021-2020\right)\left(2021+2020\right)=4041\)
\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{2020.2022}\)
\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{2020}-\dfrac{1}{2022}\)
\(=1-\dfrac{1}{2022}\)
\(=\dfrac{2021}{2022}\)
có: \(2020.2022=\left(2021-1\right)\left(2021+1\right)=2021^2-1< 2021^2\)
là dấu bé nha ấn nhanh qá bị nhầm