Tìm GTLN của biểu thức: \(A=\frac{2}{\sqrt{x}+3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐK : \(x\ge0\)
A = \(\frac{1}{\sqrt{x}+1}-\frac{3}{x\sqrt{x}+1}+\frac{1}{x-\sqrt{x}+1}\)
\(=\frac{x-\sqrt{x}+1-3+2\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\cdot\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\frac{\sqrt{x}}{x-\sqrt{x}+1}\)
b) \(A=\frac{\sqrt{x}}{x-\sqrt{x}+1}=\frac{x-\sqrt{x}+1-x+2\sqrt{x}-1}{x-\sqrt{x}+1}=1-\frac{\left(\sqrt{x}-1\right)^2}{x-\sqrt{x}+1}\le1\)
=> Max A = 1
Dấu "=" xảy ra <=> \(\sqrt{x}-1=0\)<=> x = 1
Vậy Max A = 1 <=> x = 1
Ta có
\(\frac{\sqrt{x}}{x+\sqrt{x}+1}=\frac{1}{\sqrt{x}}+1+\sqrt{x}\)
Áp dụng bất đẳng thức cô si cho 2 số không âm ta có
\(\frac{1}{\sqrt{x}}+\sqrt{x}\ge2\)
=>\(1+\frac{1}{\sqrt{x}}+\sqrt{x}\ge3\)
dấu bằng xảy ra <=>x=1
\(x^2-2x+2=x^2-2x+1+1=\left(x-1\right)^2+1\ge1\)
\(\Rightarrow\sqrt{x^2-2x+2}\ge1\)
\(\Rightarrow2+\sqrt{x^2-2x+2}\ge2+1=3\)
\(\Rightarrow\frac{3}{2+\sqrt{x^2-2x+2}}\le\frac{3}{3}\)
\(\Rightarrow\frac{-3}{2+\sqrt{x^2-2x+2}}\ge\frac{-3}{3}=-1\)
vậy Amin = -1 khi x=1
Không có giá trị lớn nhất bạn nhé, hoặc là viết nhầm biểu thức hoặc nhầm câu hỏi. Chúc bạn may mắn.
Vì \(x^2-2x+2=\left(x-1\right)^2+1\ge1\)nên ta có :
\(\Leftrightarrow\sqrt{\left(x-1\right)^2+1}\ge1\)
\(\Leftrightarrow2+\sqrt{x^2-2x+2}\ge3\)
\(\Leftrightarrow-\frac{3}{2+\sqrt{x^2-2x+2}}\le-\frac{3}{3}=-1\)
\(\Rightarrow A_{Max}=-1\)
- \(A=\frac{3-5\sqrt{x}}{\sqrt{x}+1}=\frac{-5\left(\sqrt{x}+1\right)+8}{\sqrt{x}+1}=\frac{8}{\sqrt{x}+1}-5\)
Ta có \(\sqrt{x}+1\ge1\Rightarrow\frac{8}{\sqrt{x}+1}-5\le3\Rightarrow A\le3\)
Max A = 3 <=> x = 0
- Không tồn tại giá trị nhỏ nhất.
1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4
--> Pmin=4 khi x=4
2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1
=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6
<=> M=2t2+t-4\(\ge\)2.12+1-4=-1
Mmin=-1 khi t=1 hay x=2
vì \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+3\ge3\Rightarrow\)\(\frac{2}{\sqrt{x}+3}\le\frac{2}{3}\)
vậy A đạt GTLN ki và chỉ khi \(\sqrt{x}=0\)suy ra x=0