Tìm chữ số tận cùng
A=9999^2n+999^2n+1+10^n
mình đang cần gấp
ai giúp vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tui làm đk câu a thôi: câu b chưa nghĩ ra đk
62n có tận cùng là 6 vì 6 mũ mấy cũng có tận cùng là 6
3n+2.3n=3n.32.3n=3n.(9+1)=3n.10 có tận cùng là 0
=> tổng trên có tận cùng là 6
\(A=\dfrac{2n-3-n}{n+8}=\dfrac{n-3}{n+8}=\dfrac{n+8-11}{n+8}=1-\dfrac{11}{n+8}\)
Để A nguyên thì 11 chia hết cho n+8
=>\(n+8\in\left\{1;-1;11;-11\right\}\)
=>\(n\in\left\{-7;-9;3;-19\right\}\)
62n có tận cùng là 6 mọi n (1); 3n+2+3n=3n(32+1)=3n.10 có tận cùng là 0 (2). Từ (1);(2) suy ra biểu thức ban đầu có tận cùng là 6
52n+1 có tận cùng là 5 mọi n; 2n+2 có tận cùng là 1 số chẵn => 52n+1.2n+2 tận cùng là 0 (1)
3n+2=3n.9 ; 22n+1=4n.2 => 3n+2.22n+1=12n.18. Mà 12n có tận cùng có thể là: 2;4;6;8 => 12n.18 có tận cùng là các số: 2;4;6;8 (2)
Từ (1);(2) suy ra bt ban đầu có tận cùng là: 2;4;6;8
\(A=9999^{2n}+999^{2n+1}+10^n=1111^{2n}\cdot\left(9^2\right)^n+111^{2n}\cdot\left(9^2\right)^n\cdot9+10^n=1111^{2n}\cdot81^n+111^{2n}\cdot81^n\cdot9+10^n=\left(...1\right)\cdot\left(...1\right)+\left(...1\right)\cdot\left(...1\right)\cdot9+\left(...0\right)=\left(...1\right)+\left(...9\right)+\left(...0\right)=\left(...0\right)\) \(\Rightarrow\)chữ số tận cùng của A là 0
A = 99992n + 9992n + 1 + 10n
A = (99992)n + (9992)n . 999 + 100...0 (n chữ số 0)
A = (.....1)n + (.....1)n . 999 + 100...0 (n chữ số 0)
A = (.....1) + (.....1) . 999 + 100...0 (n chữ số 0)
A = (.....1) + (......9) + 100...0 (n chữ số 0)
A = (......0)
Vậy A tận cùng là 0