Giải các phương trình:
1. 𝑥^4 − 5𝑥 ^2 + 4 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(5x^4-x^3+7x\)
\(=x\left(5x^3-x^2+7\right)\)
c: \(x^2-5x+6=\left(x-2\right)\left(x-3\right)\)
\(\left(5x-1\right)\left(x+3\right)-\left(x-2\right)\left(5x-4\right)\)
\(=5x^2+14x-3-5x^2+14x-8\)
\(=28x-11\)
Bài 1:
a. $x(x^2-5)=x^3-5x$
b. $3xy(x^2-2x^2y+3)=3x^3y-6x^3y^2+9xy$
c. $(2x-6)(3x+6)=6x^2+12x-18x-36=6x^2-6x-36$
d.
$(x+3y)(x^2-xy)=x^3-x^2y+3x^2y-3xy^2=x^3+2x^2y-3xy^2$
Bài 2:
a.
\((2x+5)(2x-5)=(2x)^2-5^2=4x^2-25\)
b.
\((x-3)^2=x^2-6x+9\)
c.
\((4+3x)^2=9x^2+24x+16\)
d.
\((x-2y)^3=x^3-6x^2y+12xy^2-8y^3\)
e.
\((5x+3y)^3=(5x)^3+3.(5x)^2.3y+3.5x(3y)^2+(3y)^3\)
\(=125x^3+225x^2y+135xy^2+27y^3\)
f.
\((5-x)(25+5x+x^2)=5^3-x^3=125-x^3\)
\(1,\\ a,=x^3-5x\\ b,=3x^3y-6x^3y^2+9xy\\ c,=6x^2-6x-36\\ d,=x^3+2x^2y-3xy^2\\ 2,\\ a,=4x^2-25\\ b,=x^2-6x+9\\ c,=9x^2+24x+16\\ d,=x^3-6x^2y+12xy^2-8y^3\\ e,=125x^3+225x^2y+135xy^2+27y^3\\ f,=125-x^3\)
\(g,=8y^3+x^3\\ 3,\\ a,=x\left(x+2\right)\\ b,=\left(x-3\right)^2\\ c,=\left(x-y\right)\left(y+5\right)\\ d,=2x\left(y+1\right)-y\left(y+1\right)=\left(2x-y\right)\left(y+1\right)\\ e,=6x^2y^2\left(xy^2+2y-3x\right)\)
1.Thay m=-1 vào pt ta được:
\(x^4-2x^2-3=0\)\(\Leftrightarrow\left[{}\begin{matrix}x^2=-1\left(vn\right)\\x^2=3\end{matrix}\right.\)\(\Rightarrow x=\pm\sqrt{3}\)
Vậy...
2.Đặt \(t=x^2\left(t\ge0\right)\)
Với mỗi t>0 thì sẽ luôn có hai x phân biệt
Pttt: \(t^2-2t+m-2=0\) (2)
Để pt (1) có 4 nghiệm pb \(\Leftrightarrow\) PT (2) có hai nghiệm pb dương
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\S=2>0\left(lđ\right)\\P=m-2>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}4-4\left(m-2\right)>0\\m>2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m< 3\\m>2\end{matrix}\right.\)\(\Rightarrow2< m< 3\)
Vậy...
1. Bạn tự giải
2. Đặt \(x^2=t\ge0\) pt trở thành:
\(t^2-2t+m-2=0\) (2)
Pt đã cho có 4 nghiệm pb khi và chỉ khi (2) có 2 nghiệm dương pb
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=1-\left(m-2\right)>0\\t_1+t_2=2>0\\t_1t_2=m-2>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m< 3\\m>2\end{matrix}\right.\)
\(\Rightarrow2< m< 3\)
\(x+\dfrac{4}{5}\times\dfrac{3}{8}=\dfrac{3}{2}\)
\(x+\dfrac{3}{10}=\dfrac{3}{2}\)
\(x=\dfrac{3}{2}-\dfrac{3}{10}\)
\(x=\dfrac{12}{10}=\dfrac{6}{5}\)
Ta có: \(x^4-5x^2+4=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x+1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=-1\\x=-2\end{matrix}\right.\)
Vậy: S={1;2;-1;-2}
đặt \(t=x^2\left(t\ge0\right)=>t^2-5t+4=0\)
\(=>\Delta=\left(-5\right)^2-4.4=9>0\)
\(=>\left[{}\begin{matrix}t1=\dfrac{5+\sqrt{9}}{2}=4\left(tm\right)\\t2=\dfrac{5-\sqrt{9}}{2}=1\left(tm\right)\end{matrix}\right.\)
với \(t=t1=>x=\pm2\)
với \(t=t2=>x=\pm1\)