Chứng tỏ rằng với mọi số tự nhiên n
a)\(3^{4n+1}+2⋮5\)
b)\(2^{4n+1}+3⋮5\)
c)\(9^{2n+1}+1⋮10\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) 34n + 1 + 2
= 34n.3 + 2
= (34)n.3 + 2
= (...1)n.3 + 2
= (...3) + 2 = (...5)
=> 34n + 1 + 2 \(⋮\)5
c) 24n + 1 + 3 = 24n.2 + 3 = (24)n.2 + 3 = (...6)n.2 + 3 = (....6).2 + 3 = (....2) + 3 = ...5
=>24n + 1 + 3 \(⋮\) 5
d) 24n + 2 + 1 = 24n.4 + 1 = (24)n.4 + 1 = (....6)n.4 + 1 = (...6).4 + 1 = (...4) + 1 = (....5)
=> 24n + 1 + 1\(⋮\)5
e) 92n + 1 + 1 = 92n.9 + 1 = (92)n.9 + 1 = (...1)n.9 + 1 = (....1).9 + 1 = (...9) + 1 = (...0)
=> 24n + 1 + 1 \(⋮\)10
Mình mẫu đầu với cuối nhé:
a) Đặt \(ƯCLN\left(3n+4,3n+7\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}3n+4⋮d\\3n+7⋮d\end{matrix}\right.\)
\(\Rightarrow\left(3n+7\right)-\left(3n+4\right)⋮d\)
\(\Rightarrow3⋮d\)
\(\Rightarrow d\in\left\{1,3\right\}\)
Nhưng do \(3n+4,3n+7⋮̸3\) nên \(d\ne3\Rightarrow d=1\)
Vậy \(ƯCLN\left(3n+4,3n+7\right)=1\) hay \(3n+4,3n+7\) nguyên tố cùng nhau.
e) \(ƯCLN\left(2n+3,3n+5\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\)
\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)
\(\Rightarrow1⋮d\) \(\Rightarrow d=1\)
Vậy \(ƯCLN\left(2n+3,3n+5\right)=1\), ta có đpcm.
a) Vì \(3^{4n+1}\) luôn có chữ số tận cùng là 3
nên \(3^{4n+1}+2⋮5\)(Vì có chữ số tận cùng là 5)
c) Vì \(9^{2n+1}\) luôn có chữ số tận cùng là 9
nên \(9^{2n+1}+1⋮10\)(Vì có chữ số tận cùng là 0)