Giải bất phương trình:
x2 - 2x + 8 < 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^2+2>0\right)\left(2x-3\right)=0\Leftrightarrow x=\dfrac{3}{2}\)
a) Thay \(x=1\) vào phương trình, ta được:
\(1+2m+1+m^2-3m=0\) \(\Rightarrow m\in\varnothing\)
Vậy khi \(x=1\) thì phương trình vô nghiệm
b) Xét phương trình, ta có: \(\Delta=16m+1\)
Để phương trình có nghiệm \(\Leftrightarrow\Delta\ge0\) \(\Leftrightarrow m\ge-\dfrac{1}{16}\)
Vậy \(m\ge-\dfrac{1}{16}\)
Chọn D
Lập bảng xét dấu
Dựa vào bảng xét dấu, ta có tập nghiệm của bất phương trình đã cho là:
a) thay m = 3 ta có pt:
x2 + 10x + 3 = 0
<=> xét delta phẩy
25 - 3 = 22
\(\left[{}\begin{matrix}x1=-5+\sqrt{22}\\x2=-5-\sqrt{22}\end{matrix}\right.\)
vậy S={ \(-5+\sqrt{22}\);\(-5-\sqrt{22}\)}
b) xét delta phẩy
(m+2)2 - m2 + 6
= 4m +10
để phương trình có 2 nghiệm x1;x2 thì delta phẩy ≥ 0
=> m ≥ \(\dfrac{-10}{4}\)
theo Vi-ét ta có:
\(\left\{{}\begin{matrix}x1+x2=-2m-4\\x1x2=m^2-6\end{matrix}\right.\)
theo bài ra ta có:
x12 + x22 = 16
<=> (x1+x2)2 - 2x1x2 = 16
=> 4m2 + 16m + 16 - 2m2 + 12 = 16
<=> 2m2 + 16m + 12 = 0
<=> m2 + 8m + 6 = 0
giải ra \(\left[{}\begin{matrix}m=-4+\sqrt{10}\\m=-4-\sqrt{10}\end{matrix}\right.\)
vậy m = \(-4+\sqrt{10}\) để pt có 2 nghiệm thỏa mãn hệ thức x12 + x22 = 16
( m = -4-\(\sqrt{10}\) loại)
Ta có : \(x^2+4x=0\)
\(\Leftrightarrow x\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
Vậy ...
2:
a: =>2x^2-4x-2=x^2-x-2
=>x^2-3x=0
=>x=0(loại) hoặc x=3
b: =>(x+1)(x+4)<0
=>-4<x<-1
d: =>x^2-2x-7=-x^2+6x-4
=>2x^2-8x-3=0
=>\(x=\dfrac{4\pm\sqrt{22}}{2}\)
=>x^2+x-1=0
Δ=1^2-4*1*(-1)=1+4=5>0
=>Phương trình luôn có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-1-\sqrt{5}}{2}\\x_2=\dfrac{-1+\sqrt{5}}{2}\end{matrix}\right.\)
\(x^2-2x+8< 0\)
\(\Leftrightarrow x^2-2x+1+7< 0\)
\(\Leftrightarrow\left(x-1\right)^2+7< 0\)
PTVN.
`x^2 - 2x + 8 < 0`
`<=> (x-1)^2 + 7 < 0`
`<=> (x-1)^2 < -7`
Vì `(x-1)^2 > -7` với mọi `x`
`=>` vô nghiệm
Vậy `x \in RR`