So sánh bằng 3 cách:
\(\frac{n}{n+7}và\frac{n+3}{n+5}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì \(\frac{87}{39}>1\)
\(\frac{2015}{2017}< 1\)
\(\Rightarrow\frac{87}{39}>\frac{2015}{2017}\)
\(\frac{n}{n+1}\)và \(\frac{n+1}{n+3}\)
\(\Rightarrow\frac{n}{n+1}=\frac{n\cdot\left(n+3\right)}{\left(n+1\right)\left(n+3\right)}\)
\(\Rightarrow\frac{n+1}{n+3}=\frac{\left(n+1\right)^2}{\left(n+3\right)\left(n+1\right)}\)
\(\Rightarrow n\cdot\left(n+3\right)=n^2+3n\)
\(\Rightarrow\left(n+1\right)^2=n^2+2n+1\)
Dấu bằng chỉ xảy ra khi n = 1
Còn với mọi trường hợp n > 1 thì
\(\frac{n}{n+1}>\frac{n+1}{n+3};n^2+3n>n^2+2n+1\)
h) Ta có: \(\frac{n+1}{n+2}=1-\frac{1}{n+2}\)
\(\frac{n+3}{n+4}=\frac{1}{n+4}\)
Vì \(n+2< n+4\)\(\Rightarrow\frac{1}{n+2}>\frac{1}{n+4}\)
\(\Rightarrow1-\frac{1}{n+2}< 1-\frac{1}{n+4}\)\(\Rightarrow\frac{n+1}{n+2}< \frac{n+3}{n+4}\)
#)Giải :
1.
Ta có : \(\frac{n+1}{n+2}>\frac{n}{n+2}>\frac{n}{n+3}\)
\(\Rightarrow\frac{n+1}{n+2}>\frac{n}{n+3}\)
2.
a) \(x\left(104,5-14,1+9,6\right)=25\)
\(x\times100=25\)
\(x=25\div100\)
\(x=0,25\)
Bài 1 : Ta có :\(\frac{n+1}{n+2}>\frac{n}{n+2}>\frac{n}{n+3}\)
\(\Leftrightarrow\frac{n+1}{n+2}>\frac{n}{n+3}\)
Bài 2 : \(104,5\cdot x-14,1\cdot x+9,6\cdot x=25\)
\(\Leftrightarrow\left[104,5-14,1+9,6\right]\cdot x=25\)
\(\Leftrightarrow100\cdot x=25\)
\(\Leftrightarrow x=\frac{1}{4}\)
\(1+2+3+4+...+x=210\)
Số số hạng của dãy là : \((x-1):1+1=x\) số
Cho nên tổng của dãy đó là : \(\frac{x(x+1)}{2}=210\)
\(\Leftrightarrow x(x+1)=420\)
\(\Leftrightarrow x(x+1)=20\cdot21\)
\(\Leftrightarrow x=20\)
\(x-\frac{3}{4}=1-\frac{5}{6}\)
\(\Leftrightarrow x-\frac{3}{4}=\frac{1}{6}\)
\(\Leftrightarrow x=\frac{1}{6}+\frac{3}{4}=\frac{11}{12}\)
M=(1.3.5.7.....99)/(2.4.6.8.....100)
số số hạng của tử = (99-1)/2 +1 = 50 -> 1.3.5.7....99= (99+1)*50/2 =2500
số số hạng của mẫu = (100-2)/2+1 =50 -> 2.4.6.8....100= (100+2)*50/2 =2550
--> M= 2500/2550 =50/51
Làm tương tự với N ta có kq N=51/52 ->M/N= 2600/2601 -> M<N
Sửa N=\(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}.....\frac{100}{101}\)
Ta có : \(\frac{1}{2}< \frac{2}{3}\); \(\frac{3}{4}< \frac{4}{5}\); \(\frac{5}{6}< \frac{6}{7}\); ... ; \(\frac{99}{100}< \frac{100}{101}\)
\(\Rightarrow\)\(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\)hay M < N
b) M .N = \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}.\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}=\frac{1.2.3.4.5.6...99.100}{2.3.4.5.6.7...100.101}=\frac{1}{101}\)
c) vì M < N nên M. M < M . N = \(\frac{1}{101}\)\(< \frac{1}{100}\)
\(\Rightarrow M< \frac{1}{10}\)
Cách 1 :
Ta có : \(\frac{n}{n+1}>\frac{n}{2n+3}\left(1\right)\)
\(\frac{n+1}{n+2}>\frac{n+1}{2n+3}\left(2\right)\)
Cộng theo từng vế ( 1) và ( 2 ) ta được :
\(A=\frac{n}{n+1}+\frac{n+1}{n+2}>\frac{2n+1}{2n+3}=B\)
VẬY \(A>B\)
CÁCH 2
\(A=\frac{n}{n+1}+\frac{n+1}{n+2}>\frac{n}{n+2}+\frac{n+1}{n+2}\)
\(=\frac{2n+1}{n+2}>\frac{2n+1}{2n+3}\)
VẬY A>B
Chúc bạn học tốt ( -_- )