Không dùng mày tính hoặc bảng số, tính:
A =\(sin^25^o+sin^225^o+sin^245^o+sin^265^o+sin^285^o\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(\sin^25^0+\sin^285^0\right)+\left(\sin^225^0+\sin65^0\right)+\sin^245^0\)
\(=\left(\sin^25^0+\cos^25^0\right)+\left(\sin^225^0+\cos^225^0\right)+\frac{1}{2}\)
\(=1+1+\frac{1}{2}\)
\(=\frac{5}{2}\)
\(B=\left(\tan1^0.\tan89^0\right).\left(\tan2^0.\tan88^0\right).\left(\tan3^0.\tan87^0\right)...\tan45^0=\left(\tan1^0.\cot1^0\right).\left(\tan2^0.\cot2^0\right).\left(\tan3^0.\cot3^0\right)...1=1\)
sina=cos(90-a) thay vào ta được
sin215+sin225+sin235+cos235+cos225+cos215=3
tương tự câu dưới ta được =3/2
\(ADCT:\sin^2\alpha+\cos^2\alpha=1\)
\(A=\left(\sin^242^0+\sin^248^0\right)+\left(\sin^243^0+\sin^247^0\right)+\left(\sin^244^0+\sin^246^0\right)+\sin45^0\)
\(A=\left(\sin^242^0+\cos^242^0\right)+\left(\sin^243^0+\cos^243^0\right)+\left(\sin^244^0+\cos^244^0\right)+\frac{\sqrt{2}}{2}\)
\(A=1+1+1+\frac{\sqrt{2}}{2}=\frac{6+\sqrt{2}}{2}\)
Câu b lm tương tự
a, \(\cos^215+\cos^225+\cos^235+\cos^245+\sin^235+\sin^225+\sin^215\)
=\(\left(\cos^215+\sin^215\right)+\left(\cos^225+\sin^225\right)+\left(\cos^235+\sin^235\right)+\cos^245\)
=\(1+1+1+\frac{1}{2}=\frac{7}{2}\)
b.\(\sin^210-\sin^220-\sin^230-\sin^240-\cos^240-\cos^220+\cos^210\)
=\(\left(\sin^210+\cos^210\right)-\left(\sin^220+\cos^220\right)-\left(\sin^240+\cos^240\right)-\sin^230\)
=\(1-1-1-\frac{1}{4}=-\frac{5}{4}\)
c,\(\sin15+\sin75-\sin75-\cos15+\sin30=\sin30=\frac{1}{2}\)
`sin^2 25^o + sin^2 65^o`
`=cos^2 65^o + sin^2 65^o`
=1`
__________________________________________
`***` Áp dụng công thức lượng giác: `sin^2 \alpha +cos^2 \alpha =1`
Ta có: \(A=\sin^25^0+\sin^225^0+\sin^245^0+\sin^265^0+\sin^285^0\)
\(=\left(\sin^25^0+\sin^285^0\right)+\left(\sin^225^0+\sin^265^0\right)+\dfrac{1}{2}\)
\(=2+\dfrac{1}{2}=\dfrac{5}{2}\)
\(\Rightarrow A=\left(sin^25^0+sin^285^0\right)+\left(sin^225^0+sin^265^0\right)+sin^245^0=\left(sin^25^0+cos^25^0\right)+\left(sin^225^0+cos^225^0\right)+\dfrac{1}{2}=1+1+\dfrac{1}{2}=\dfrac{5}{2}\)